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Retinal microvascular parameters 
are not associated with reduced 
renal function in a study of 
individuals with type 2 diabetes
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Ruixuan Wang2, Stephen Hogg2, Thomas J. MacGillivray3, Emanuele Trucco2 &  
Alexander S. Doney4

The eye provides an opportunistic “window” to view the microcirculation. There is published evidence 
of an association between retinal microvascular calibre and renal function measured by estimated 
glomerular filtration rate (eGFR) in individuals with diabetes mellitus. Beyond vascular calibre, few 
studies have considered other microvascular geometrical features. Here we report novel null findings 
for measures of vascular spread (vessel fractal dimension), tortuosity, and branching patterns and their 
relationship with renal function in type 2 diabetes over a mean of 3 years. We performed a nested case-
control comparison of multiple retinal vascular parameters between individuals with type 2 diabetes 
and stable (non-progressors) versus declining (progressors) eGFR across two time points within a 
subset of 1072 participants from the GoDARTS study cohort. Retinal microvascular were measured 
using VAMPIRE 3.1 software. In unadjusted analyses and following adjustment for age, gender, 
systolic blood pressure, HbA1C, and diabetic retinopathy, no associations between baseline retinal 
vascular parameters and risk of eGFR progression were observed. Cross-sectional analysis of follow-up 
data showed a significant association between retinal arteriolar diameter and eGFR, but this was not 
maintained following adjustment. These findings are consistent with a lack of predictive capacity for 
progressive loss of renal function in type 2 diabetes.

Type 2 diabetes mellitus is a disease characterised by micro- and macrovascular complications in 30–50% of 
people with the condition1 and is the commonest cause of end-stage renal disease (ESRD), accounting for approx-
imately 45% of incident and 38% of prevalent ESRD in the United States2. High rates of incident chronic kidney 
disease (CKD) have been reported in both type 1 and type 2 diabetes based on established renal function cut-offs 
(estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2), with up to 29% of those with newly diag-
nosed type 2 diabetes likely to develop CKD over 15 years of follow-up3, with similar rates also reported in type 
1 diabetes4,5.

Pathological microvascular changes that manifest themselves in diabetes are important contributory mech-
anisms leading to increased prevalence of CKD in those with the condition6–8. The retina enables accessible vis-
ualisation of tissue vascularisation and quantitative evaluation of retinal microvascular parameters (RVP) and 
specific retinal microvascular changes have been associated with a range of vascular-related conditions, including 
hypertension9, coronary heart disease10, stroke11 and diabetes12. Retinal microvascular parameters have also been 
suggested to reflect systemic microvascular damage resulting from renal dysfunction13, and in population-based 
studies, reduced eGFR has been associated with both narrower retinal arteriolar14–21 and venular calibre14,16,22,23, 
but to date the evidence has been limited and the findings reported, inconsistent.

A wide range of perturbed metabolic pathways are associated with vascular injury in diabetes. Advanced 
glycation end products are formed, microRNA profiles become attenuated, nitric oxide bioavailability is reduced, 
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oxidative damage is increased and there is a proliferation of inflammatory mediators such as interleukin-6 (IL-6) 
and c-reactive protein (CRP)8,24. Several of these biochemical changes are associated with alterations in retinal 
vascular calibre, e.g. IL-6 and CRP25,26, serum glucose26, and nitric oxide inhibition27. CKD has also been associ-
ated with vascular changes linked to hypertension, dyslipidaemia, endothelial dysfunction, accelerated athero-
sclerosis, inflammation and abnormal bone mineral metabolism28,29. While calcification may influence vascular 
morphology, hypertension has established associations with narrower retinal arteriolar calibre30. The combined 
vascular effects of type 2 diabetes and renal impairment may correlate with earlier retinal changes which, if iden-
tified during routine screening, may enable detection and stratification of those at increased risk of progressive 
CKD, facilitating earlier clinical intervention to slow CKD progression.

The complexity of the retinal vasculature can be estimated by its fractal dimension. Lower fractal dimension 
has been reported in those with CKD18,23 in contrast to increased fractal dimension in type 2 diabetes31. Given 
the divergent effects of type 2 diabetes and CKD on retinal microvascular fractal dimension, it is unclear if this 
parameter is associated with diabetes, CKD or both. Increased retinal vascular tortuosity has also been reported 
in association with longer diabetes duration32 but evidence on the impact of change in renal function and retinal 
vascular tortuosity in diabetes is scarce. The aim of this study therefore was to examine the prognostic potential 
of RVP to predict eGFR decline in a large prospective cohort of type 2 diabetes.

Results
Overall the sample population had a mean age of 63.0 years (standard deviation (SD) = 7.6) and 49% were female. 
Mean follow-up time was 3.01 years (SD = 0.35). The study sample had a mean glycated haemoglobin (HbA1c) 
of 7.41% (SD = 1.39), and a mean systolic blood pressure (SBP) of 138 mmHg (SD 13). A total of 570 participants 
met the group 1 definition and were designated non-progressors, 335 participants met the group 2 criteria and 
were designated progressors. There were no significant differences in blood pressure, HbA1c or diabetic retin-
opathy status between progressors and non-progressors at baseline. Baseline eGFR was significantly higher in 
progressors compared to non-progressors (98.6 ml/min/1.73 m2, SD = 21.3 vs. 91.3 ml/min/1.73 m2, SD = 14.3, 
p < 0.001) (Table 1).

Over the mean follow up time of 3.01 yrs, mean change in eGFR was −27.73 ml/min/1.73 m2 (SD = 14.31 ml/
min/1.73 m2) in progressors versus +2.74 ml/min/1.73 m2 (SD = 10.85 ml/min/1.73 m2) in non-progressors, 
p < 0.001. SBP and diastolic blood pressure (DBP) fell in both groups, but decreased significantly more in pro-
gressors than in non-progressors (SBP decreased by 2.49 mmHg (16.26) and 0.23 mmHg (12.94) for progressors 
and non-progressors respectively, p = 0.04; DBP decreased by 2.61 mmHg (9.36) and 1.15 mmHg (7.69) respec-
tively in progressors and non-progressors, p = 0.02). There was no significant change in HbA1C in both groups 
between time-points (+0.13% (1.42), and +0.04% (1.37) for progressors and non-progressors respectively, 
p = 0.41). In both groups a non-significant decrease in arteriolar and venular calibre of approximately 1% was 
observed between time-points but there was no significant difference in the rate of vascular narrowing between 
groups. No significant differences in the other parameters measured (fractal dimension, tortuosity, or number of 
first branches) were detected between progressors and non-progressors (Table 2).

In unadjusted and adjusted logistic regression models controlling for age, sex, SBP, and HbA1c, none of the 
baseline RVP were significantly associated with greater odds of being a progressor. For instance, per unit increase 
in central retinal arteriolar calibre (CRAE) the odds of being a progressor were multiplied by 1.02 (OR = 1.02, 
95% CI = 0.97, 1.08) in the adjusted analysis but this was not statistically significant (p = 0.46). Similarly, per 
unit increase in central retinal venular calibre (CRVE), the odds of being a progressor were multiplied by 1.03 
(OR = 1.03, 95% CI = 0.99, 1.07) in the adjusted analysis but this was also not statistically significant (p = 0.18). 
Further adjustment for diabetic retinopathy and fellow vessel calibre also failed to identify any significant associa-
tions between RVP and likelihood of decline in eGFR. No associations were identified between baseline RVP and 
odds of being a progressor in this type 2 diabetes cohort (Table 3).

Lower CRAE at follow-up was significantly associated with follow-up eGFR in unadjusted linear regression 
analysis (β = −0.47, 95% CI = −0.87, −0.07, p = 0.02), with CRVE (β = −0.30, 95% CI = −0.60, 0.00, p = 0.05) 
and arteriolar fractal dimension (β = −18.41, 95% CI = −36.92, 0.10, p = 0.05) approaching statistical signif-
icance. After adjustment for age, gender, follow-up SBP and HbA1c, the associations between RVP and eGFR 

Baseline Variables Sample n = 1068
Progressors 
n = 335

Non-progressors 
n = 570 p

Age, yrs (SD) 63.0 (7.6) 62.5 (7.7) 63.1 (7.8) 0.21

Gender, female (%) 521 (49) 168 (50) 281 (49) 0.81

eGFR, ml/min/1.73 m2 (SD) 94.0 (17.2) 98.6 (21.3) 91.3 (14.3) <0.001

SBP, mmHg (SD) 138 (13) 139 (14) 137 (13) 0.08

DBP, mmHg (SD) 77 (8) 76 (9) 77(8) 0.63

HbA1C, % (SD); mmol/mol 7.41 (1.38); 57.5 7.51 (1.36); 58.6 7.40 (1.41); 57.4 0.25

Diabetic retinopathy present, n (%) 244 (23) 82 (25) 118 (21) 0.19

Mean follow-up period, yrs (SD) 3.01 (0.35) 3.02 (0.35) 3.02 (0.34) 0.98

Table 1.  Baseline sample characteristics. Yrs: years; eGFR: estimated glomerular filtration rate (calculated 
using the CKD-EPI equation); SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycated 
hemoglobin; SD: standard deviation. P values were calculated by independent sample t and chi squared tests for 
comparisons between progressors and non-progressors.
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at follow-up were no longer statistically significant (Table 4). Associations were not materially altered following 
additional adjustment for diabetic retinopathy or fellow vessel calibre (data not shown).

Discussion
Routine investigation of retinal biomarkers has improved through advances in digital imaging systems and rou-
tine eye screening programmes, wider availability through high street opticians and software improvements capa-
ble of quantifying multiple RVP with improved accuracy.

In this longitudinal, case-control study of individuals with type 2 diabetes, the prognostic value of a wide range 
RVP for the identification of those at increased risk of eGFR decline was considered. No association between 
baseline RVP and change in eGFR between two time points approximately 3 years apart was found, suggesting 
a lack of potential for RVP as predictive biomarkers of eGFR decline in this cohort of type 2 diabetes over the 
limited time-period considered.

Several studies have previously reported associations between renal disease and RVP in both type 1 and type 
2 diabetes. Cross-sectional studies in type 1 diabetes found associations between narrower retinal arterioles and 
prevalent diabetic nephropathy (DN)33,34. In contrast, prospective studies of type 1 diabetes have reported wider 
venular calibre in association with albuminuria35,36 and renal insufficiency35 over 16 years of follow-up, while 
narrower retinal arterioles36 and sparser vasculature37 have also been reported in association with proteinuria. 
These previous findings in type 1 diabetes contrast to the present study which found no significant associations 
with eGFR decline in type 2 diabetes. Reductions in eGFR can occur in the presence or absence of albuminu-
ria38 and may have entirely independent associations with retinal vascular morphology. Population differences 
between type 1 and type 2 diabetes are also worthy of further consideration. Age is a well-established confounder 
of RVP and type 1 diabetes populations are typically younger. The population of the Danish Cohort of Pediatric 
Diabetes36 had a mean age of 21 years, far younger than the 63 year average age of the population of this study. 
Age-related variation leads to greater “noise” within the data due to associations with retinal vascular changes and 
other risk factors. In particular, older age is associated with reduced vessel calibre39 in contrast to the increased 
venular calibre reported previously in association with DN. Older age is also strongly associated with a reduction 
in eGFR resulting in increased prevalence of CKD in older populations which may be sufficient to obscure any 
changes in retinal vascular morphology40. Although most studies adjust for the effects of age, the potential for 
confounding in cross-study comparisons, exists. Furthermore, although we adjusted for glycated haemoglobin, 
the potential confounding of insulin control may also influence variation in RVP between type 1 and type 2 
diabetes.

Previously reported associations between RVP and renal outcomes in type 2 diabetes have not always been 
consistent. Data from the Wisconsin Epidemiological study of Diabetic Retinopathy (WESDR) reported an asso-
ciation between wider venular calibre and DN incidence over 14 years of follow-up41. In contrast, our data failed 
to support the findings from WESDR, but do support other cross sectional studies in type 2 diabetes42, and 
prospective data with similar 2-year follow-up duration43 suggesting RVP may not predict change in eGFR over 
a short time period. Inclusion of proteinuria or albuminuria measures with eGFR may prove more informative, 
given previous reported associations with RVP in both type 1 and type 2 diabetes33–37,41.

The majority of previous investigations have been limited to the analysis of vessel calibre, with only a single 
study considering fractal dimensions with regard to albuminuria in a young type 1 diabetes population37. We 
report novel findings for measures of vascular spread (retinal vessel fractal dimension), tortuosity, and branching 

Variables
Progressors n = 335 
Mean change (SD)

Non-progressors n = 570 
Mean change (SD) p

SBP, mmHg −2.49 (16.26) −0.23 (12.94) 0.04

DBP, mmHg −2.61 (9.36) −1.15 (7.69) 0.02

HbA1C, % (SD); mmol/mol 0.13 (1.42); 1.4 0.04 (1.37); 0.4 0.38

eGFR, ml/min/1.73 m2 −27.73 (14.31) 2.74 (10.85) <0.001

Calibre

  Central retinal arteriolar equivalent −0.46 (2.41) −0.52 (2.55) 0.72

  Central retinal venular equivalent −0.57 (2.94) −0.56 (3.41) 0.95

  Arteriovenous ratio 4.7 × 10−5 (5.0 × 10−2) −1.9 × 10−3 (5.5 × 10–2) 0.60

No. of first branches in zone C

  Arteriolar 0.01 (1.15) −0.13 (1.19) 0.09

  Venular −0.03 (1.03) −0.09 (0.97) 0.32

Fractal dimension

  Arteriolar −5.5 × 10−3 (0.05) −9.1 × 10−3 (0.06) 0.36

  Venular −6.3 × 10−3 (0.05) −9.1 × 10−3 (0.05) 0.45

Tortuosity

  aArteriolar −1.1 × 10−2 (0.25) 3.3 × 10−3 (0.27) 0.44

  aVenular 4.5 × 10−2 (0.31) 4.0 × 10−2 (0.29) 0.81

Table 2.  Between group comparisons for progressors and non-progressors. eGFR: estimated glomerular 
filtration rate (calculated using the CKD-EPI equation); SD: standard deviation. P values were calculated by 
independent sample t test. aTortuosity variables were log transformed before to produce normal distribution.
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patterns in type 2 diabetes. Fractal dimension and tortuosity were not associated with eGFR decline over the 
3-year time-period in this type 2 diabetes cohort.

This study had several strengths. The prospective design allowed the predictive capacity of RVP to be exam-
ined over a 2–4 year period. Participant recruitment was clinically driven and electronic data record linkage 
provided an extensive range of variables on most participants. Our study provided novel data on the predictive 
utility of RVP and eGFR in type 2 diabetes and included wide range RVP previously under-reported in this 
context (i.e. fractal dimension, tortuosity, and number of first arteriolar branches). RVP were found to have no 
predictive value for 3-year change in eGFR in type 2 diabetes in our cohort with a mean age of 63 years. Our 
cohort originated from a population of type 2 diabetes from Tayside, Scotland, with healthcare record linkage 
which reduced the likelihood of bias. As a result, the findings are likely to be generalisable to other type 2 diabetes 
populations. The population was however almost entirely white and therefore, this sample is likely to be most 
closely generalisable to other predominantly white populations with type 2 diabetes of a similar age, given known 
associations of diabetes and renal disease with ethnicity. There is also evidence to suggest ethnic differences in 
retinal microvascular parameters20, perhaps in part due to factors associated with iris colour, retinal pigmentation 
and/ or underlying genetic influences44.

The limitations of this study include the case-control design which increased the likelihood of regression 
toward the mean, although the risk of regression toward the mean was reduced through the use of median eGFR 
values calculated from all available measurements recorded within 6 months either side of the date of each retinal 
photograph. The definition of progressors as those with eGFR < 60 ml/min/1.73 m2 at follow-up, or a reduction in 
eGFR of at least 15% between baseline and follow up, risked the inclusion of participants with limited reduction in 
renal function (e.g. eGFR 60 ml/min/1.73 m2 at baseline, and 59 ml/min/1.73 m2 at follow-up). This proved not to 
be an issue as only two participants had eGFR < 60 at follow-up combined with reductions in eGFR smaller than 
−15%, and each of these had reductions in eGFR from baseline exceeding 14% (data not shown).

Another limitation was the 3-year duration between baseline and follow-up measures, which may have been 
insufficient to detect associations between RVP and change in eGFR. As both retinal calibre and eGFR decline 
over time, the age (mean age 63 years, SD 7.6) of the population may also have limited the sensitivity to detect 
such associations with RVP. A study with longer follow-up, including participants entering at a younger age may 
be required to detect such associations.

A more comprehensive assessment of renal function (such as albumin / creatinine ratio (ACR)) and/or appro-
priate GFR estimating equations in ‘at risk’ individuals may have improved the sensitivity of our approach and 
comparability with other studies. Unfortunately, proteinuria/ACR data was not available for the earlier phase of 
GoDARTS recruitment. Although, HbA1C was included in regression models, duration of diabetes was not, and 
may have a confounding influence. The suitability and size of our sample may also have limited our capacity to 
detect meaningful associations. Inclusion of additional individuals with baseline eGFR at the lower end of CKD 
stage 2 (60–70 ml/min/1.73 m2) may have provided more meaningful clinical significance as they transition from 
CKD stage 2 to stage 3.

The algorithms used by the retinal vessel measurement platform have been validated against the “gold stand-
ard” method of manual vessel tracing45,46. However, establishing the ground truth for validation of retinal ves-
sel measurements is challenging because of the time intensive nature of the manual work and relatively poor 
inter-grader reliability that arises from manual assessment through expert disagreement on challenging issues 
related to defining vessel boundaries47,48. In contrast, the semi-automatic vessel assessment platform used in 
this study shows excellent inter-operator reliability49. Nevertheless, results may vary from associations based on 

Retinal microvascular parameter 
(per unit increase)

Unadjusted OR 
(95% CI) P

Adjusted OR 
(95% CI); P

Calibre

  Central retinal arteriolar equivalent 1.01 (0.96, 1.07) 0.40 1.02 (0.97, 1.08) 0.46

  Central retinal venular equivalent 1.03 (0.99, 1.07) 0.16 1.03 (0.99, 1.07) 0.18

  Arteriovenous ratio 0.39 (0.05, 3.38) 0.39 0.57 (0.06, 5.47) 0.62

Fractal dimension

  Arteriolar 0.82 (0.08, 8.11) 0.86 0.89 (0.08, 9.76) 0.93

  Venular 1.45 (0.14, 14.7) 0.75 1.12 (0.10, 13.0) 0.93

No. of First branches in zone C

  Arteriolar 0.95 (0.85, 1.07) 0.40 0.96 (0.85, 1.07) 0.46

  Venular 0.90 (0.80, 1.02) 0.10 0.91 (0.80, 1.03) 0.13

Tortuosity

  aArteriolar 0.68 (0.22, 2.17) 0.68 0.79 (0.24, 2.60) 0.70

  aVenular 6.88 (0.68, 69.7) 0.10 6.61 (0.63, 69.8) 0.12

Table 3.  Logistic regression models testing associations between baseline retinal vessel parameters and 
decline in renal function between progressors (cases) and non-progressors (controls). Retinal microvascular 
parameter and progression of renal functional decline (progressors versus non-progressors) adjusted for age, 
gender, baseline systolic blood pressure, and baseline HbA1c. OR: Odds ratio. 95% CI: 95% confidence interval. 
aTortuosity values were multiplied by 1000 before inclusion in logistic regression models to produce meaningful 
values.
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manually assessed retinal vascular parameters. Furthermore, measures of vascular geometry in other locations of 
the retina, such as the macula, may be of particular interest. However, summary measures of vessel calibre within 
an annulus encircling the optic disc avoid problems created by variations in branching patterns between individ-
uals, by including all of the largest microvessels of the eye50.

The results of this study suggest that retinal vascular calibre, fractal dimension, tortuosity, and number of first 
vascular branches surrounding the optic disc are not predictive of eGFR decline over a 3 year follow-up in this 
white population with type 2 diabetes.

Methods
A nested longitudinal case-control design was undertaken in participants (n = 1072) from the Genetics of 
Diabetes Audit and Research in Tayside Scotland (GoDARTS) study cohort (ClinicalTrials.gov Identifier: 
NCT02783469). The GoDARTS cohort comprises 9,439 participants with type 2 diabetes and 8,187 individuals 
with similar demographics but without type 2 diabetes at the time of recruitment. The study was granted approval 
from the Tayside

Research Ethics Committees in Scotland and was carried out in accordance with the Declaration of Helsinki, 
and has been described elsewhere51. Briefly, participants in GoDARTS were identified from a central database of 
all patients registered with a general practitioner from the Tayside region of Scotland. Diagnosis of type 2 diabetes 
was made by physicians and participants provided informed consent and agreed to electronic healthcare record 
linkage. All electronic medical record data was processed and provided in an anonymised form for research 
through robust information governance procedures approved by local NHS Caldicott Guardians through the 
Health Informatics Centre at the University of Dundee.

For inclusion in the present study, GoDARTS participants had to meet the following inclusion criteria: pres-
ence of type 2 diabetes, eGFR >60 ml/min/1.73 m2 at baseline, available digital retinal fundus images of sufficient 
quality for analysis at two time points (2–4 years apart) with corresponding clinical serum creatinine measure-
ments within 6 months of each retinal image. Serum creatinine measurements were obtained from centralised 
Blood Sciences Laboratory records and retinal fundus images were obtained through routine diabetic retinopathy 
screening52. The earliest available digital fundus image of suitable quality for analysis was selected for the right eye 
with a follow-up image captured 2–4 years later from the same eye. Retinal fundus images were analysed using 
semi-automated software, Vessel Assessment and Measurement Platform for Images of the REtina (VAMPIRE; 
VAMPIRE group, University of Dundee, Dundee, Scotland) version 3.153,54, by trained graders blinded to par-
ticipant data. VAMPIRE 3.1 measures RVP within predefined annular zones: CRAE, CRVE, arteriovenous ratio 
(AVR), number of first vessel branches within a pre-defined zone C, fractal dimension and vessel tortuosity 
(Fig. 1). Intragrader reliability of retinal vascular measurements was measured using the intraclass correlation 
coefficient, assessed in four sessions of 20 retinal images at regular intervals over the course of the measurement 
period. Mean intraclass correlation coefficient for these sessions was calculated as 0.936 for CRAE and 0.950 for 
CRVE, respectively, indicating excellent operator alignment. Diabetic retinopathy status (presence/absence) was 
obtained from medical records.

The median serum creatinine values, HbA1c, SBP and DBP were calculated from all available measurements 
recorded within 6 months either side of the date of each retinal photograph. eGFR values were calculated from 
median serum creatinine values using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
equation55.

Participants were divided into two groups based on change in eGFR between both time points. Group 1, 
“non-progressors”, included participants with stable renal function or a reduction in eGFR <10% between both 

Retinal microvascular parameter 
(per unit increase)

Unadjusted β eGFR 
(95% CI) p

Adjusted β eGFR (95% 
CI) p

Calibre

 Central retinal arteriolar equivalent −0.47 (−0.87, −0.07) 0.02 −0.38 (−0.80, 0.05) 0.08

 Central retinal venular equivalent −0.30 (−0.60, 0.00) 0.05 −0.27 (−0.58, 0.05) 0.10

 Arteriovenous ratio −3.32 (−21.81, 15.16) 0.72 −0.52 (−19.64, 18.60) 0.96

Fractal dimension

 Arteriolar −18.41 (−36.92, 0.10) 0.05 −17.64 (−36.71, 1.44) 0.07

 Venular −3.74 (−22.79, 15.31) 0.70 −3.46 (−23.36, 16.43) 0.73

No. of First branches in zone C

 Arteriolar −0.67 (−1.63, 0.30) 0.17 −0.50 (−1.50, 0.49) 0.32

 Venular 0.66 (−0.43, 1.75) 0.24 0.82 (−0.31, 1.95) 0.15

Tortuosity

 aArteriolar −0.01 (−2.66, 2.65) 1.00 −0.01 (−2.75, 2.73) 0.99

 aVenular −3.20 (−6.73, 0.32) 0.08 −2.22 (−5.86, 1.43) 0.23

Table 4.  Linear regression models testing cross-sectional associations between follow-up eGFR and follow-up 
RVP. Follow-up eGFR and follow-up RVP, adjusted for age, gender, systolic blood pressure at follow-up, and 
HbA1c at follow-up. 95% CI: 95% confidence interval. aTortuosity variables were log transformed before linear 
regression to produce normal distribution.
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time points. Group 2, “progressors”, included participants with an eGFR of <60 ml/min/1.73 m2 at follow-up or a 
reduction in eGFR of at least 15% between baseline and follow-up.

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Statistical analyses were performed using IBM SPSS v24 (Chicago, Illinois, USA). Participants with missing 
data were excluded from the analyses. Continuous variables were reported using means and SDs. Categorical var-
iables were reported as percentages. Between and within-group comparisons were made using t-tests (two-sided 
significance reported) for continuous variables, and Chi-squared tests for proportions. The relationship between 
RVP and eGFR was assessed using logistic and linear regression models. Logistic regression models were used 
to test for association between baseline RVP and progression of renal disease. The independent variables were 
RVP and progressor/non-progressor designation as a binary dependent variable. Logistic regression models were 
carried out unadjusted, and adjusted for important known confounding variables; age, gender, baseline SBP, and 
baseline HbA1c. Additional models were used to further adjust for covariates related to RVP; diabetic retinopathy 
and fellow vessel calibre (for models including retinal vascular calibre as the independent variable). Associations 
involving continuous outcome variables were assessed using multiple linear regression. Linear regression models 
were used to test for cross-sectional association between renal function and RVP at follow-up. The independ-
ent variables were RVP, the dependent variable was eGFR. Linear regression models controlled for age, gender, 
follow-up SBP and HbA1c. Additional models adjusted for diabetic retinopathy and fellow vessel calibre (where 
retinal vascular calibre was the independent variable). Tortuosity variables were log transformed before linear 
regression to produce normal distributions and to conform to the assumptions of the analysis. All significance 
values reported are two-sided.
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