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Abstract. Successful continual learning of new knowledge would enable
intelligent systems to recognize more and more classes of objects. How-
ever, current intelligent systems often fail to correctly recognize previ-
ously learned classes of objects when updated to learn new classes. It is
widely believed that such downgraded performance is solely due to the
catastrophic forgetting of previously learned knowledge. In this study, we
argue that the class confusion phenomena may also play a role in down-
grading the classification performance during continual learning, i.e., the
high similarity between new classes and any previously learned classes
would also cause the classifier to make mistakes in recognizing these old
classes, even if the knowledge of these old classes is not forgotten. To alle-
viate the class confusion issue, we propose a discriminative distillation
strategy to help the classifier well learn discriminative features between
confusing classes during continual learning. Experiments on multiple
datasets support that the proposed distillation strategy, when combined
with existing methods, is effective in improving continual learning.

Keywords: Continual learning · Confusing classes · Discriminative
distillation

1 Introduction

Continual learning or lifelong learning aims to continually learn and absorb new
knowledge over time while retaining previously learned knowledge [21]. With
this ability, humans can accumulate knowledge over time and become experts in
certain domains. It is desirable for the intelligent system to obtain this ability
and recognize more and more objects continually, with the presumption that
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Fig. 1. Continual learning suffers not only from catastrophic forgetting but also from
the confusion between old and new classes. Left: five similar classes (‘baby’, ‘boy’, ‘girl’,
‘man’, ‘woman’) were learned at different rounds; gray boxes represent certain other
classes learned at each round. Right: classification performance on ‘baby’ class learned
at the first round decreases over learning rounds, but the proposed method (orange)
can better handle the confusion between the ‘baby’ class and its similar classes at later
rounds compared to baseline iCaRL (blue). (Color figure online)

very limited amount or even no data is stored for the old classes when learning
knowledge of new classes. The intelligent system has to update its parameters
when acquiring new knowledge and often inevitably causes the downgraded per-
formance on recognizing old classes. It has been widely believed that the down-
graded performance is solely due to the catastrophic forgetting of old knowledge
during learning new knowledge [13,14], and various approaches have been pro-
posed to alleviate the catastrophic forgetting issue, such as by trying to keep
important model parameters or outputs at various layers in convolutional neural
networks (CNNs) unchanged during learning new knowledge [4,5,8,14,17].

However, sometimes simply keeping old knowledge from forgetting during
continual learning may not be enough to keep classification performance from
downgrading. At an early round of continual learning, since only a few classes
of knowledge needs to be learned, the classifier may easily learn to use part
of class knowledge to well discriminate between these classes. When any new
class is visually similar to any previously learned class during continual learning,
the visual features learned to recognize the old class may not be discriminative
enough to discriminate between the new class and the visually similar old class
(e.g., ‘girl’ vs. ‘baby’, Fig. 1), causing downgraded performance on previously
learned class. We call this phenomena the class confusion issue. In this study,
we propose a novel knowledge distillation strategy to help the classifier learn
such discriminative knowledge information between old and new classes during
continual learning. The basic idea is to train a temporary expert classifier to learn
both the new classes and visually similar old classes during continual learning,
and then distill the discriminative knowledge from the temporary expert classifier
to the new classifier. To our best knowledge, it is the first time to explore the
class confusion issue in continual learning. The main contributions are below:

– It is observed that continual learning is affected not only by catastrophic
forgetting, but also by potential class confusion between new classes and
visually similar old classes.
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– A discriminative knowledge distillation strategy is proposed to help the clas-
sifier discriminate confusing classes.

– Initial experiments on multiple image classification datasets support that the
proposed discriminative distillation can be flexibly combined with existing
methods and is effective in improving continual learning.

2 Related Work

Generally, there are two types of continual learning problems, task-incremental
and class-incremental. Task-incremental learning (TIL) presumes that one model
is incrementally updated to solve more and more tasks, often with multiple tasks
sharing a common feature extractor but having task-specific classification heads.
The task identification is available during inference, i.e., users know which model
head should be applied when predicting the class label of a new data. In con-
trast, class-incremental learning (CIL) presumes that one model is incrementally
updated to predict more and more classes, with all classes sharing a single model
head. This study focuses on the CIL problem.

Existing approaches to the two types of continual learning can be roughly
divided into four groups, regularization-based, expansion-based, distillation-
based, and regeneration-based. Regularization-based approaches often find the
model parameters or components (e.g., kernels in CNNs) crucial for old knowl-
edge, and then try to keep them unchanged with the help of regularization
loss terms when learning new classes [1,11,14]. While keeping the parameters
unchanged could help models keep old knowledge in a few rounds of continual
learning, it is not able to solve the confusion issue because more and more param-
eters in CNNs are frozen. To make models more flexibly learn new knowledge,
expansion-based approaches are developed by adding new kernels, layers, or even
sub-networks when learning new knowledge [9,12,16,22,29]. Although expand-
ing the network architecture can potentially alleviate the confusion issue to some
extent because the expanded kernels might help extract more discriminative fea-
tures, most expansion-based approaches are initially proposed for TIL and might
not be flexibly extended for CIL. In comparison, distillation-based approaches
can be directly applied to CIL by distilling knowledge from the old classifier
(for old classes) to the new classifier (for both old and new classes) during learn-
ing new classes [2,10,17,19,24]. In addition, regeneration-based approaches have
also been proposed particularly when none of old-class data is available during
learning new classes. The basic idea is to train an auto-encoder [6,23,25] or
generative adversarial network (GAN) [20,28] to synthesize old data for each
old class, such that plenty of synthetic but realistic data for each old class are
available during learning new classes. All the existing approaches are proposed
to alleviate the catastrophic forgetting issue, without aware of the existence of
the class confusion issue.
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Fig. 2. Discriminative knowledge distillation pipeline. First, the old classifier learned
at the previous round is used to identify the similar old class(es) for each new class
(Step 1). Then, the temporary expert classifier is trained to recognize both the new
classes and their similar old classes (Step 2). Finally, the old classifier and the expert
classifier are simultaneously used to teach the new classifier (Step 3). The potential
confusion between new and old classes can be alleviated by the distillation from the
expert classifier to the new classifier. (Color figure online)

3 Method

In contrast to most continual learning methods which only aim to reduce catas-
trophic forgetting during learning new classes, this study additionally aims to
reduce the potential confusions between new classes and visually similar old
classes. As in most distillation-based continual learning methods, only a small
subset of training data is stored for each old class and available during continual
learning of new classes.

3.1 Overview of the Proposed Framework

We propose a distillation strategy particularly to reduce the class confusion
issue during continual learning. At each round of continual learning, besides the
knowledge distillation from the old classifier learned at the previous round to
the new classifier at the current round, a temporary expert classifier is trained
to classify not only the new classes but also those old classes which are visually
similar to the new classes (Fig. 2, Step 2), and then the discriminative knowledge
of the expert classifier is distilled to the new classifier as well during training the
new classifier (Fig. 2, Step 3). The knowledge distillation from the expert clas-
sifier to the new classifier would largely reduce the potential confusion between
these similar classes during prediction by the new classifier. It is worth noting
discriminative knowledge distillation from the expert can be used as a plug-in
component for most distillation-based continual learning methods.

3.2 Expert Classifier

The key novelty of the proposed framework is the addition of the expert classifier
whose knowledge will be distilled to the new classifier. The expert classifier at
each learning round is trained to classify both the new classes at the current
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round and those old classes which are similar to and therefore more likely con-
fused with the new classes. In this way, the discriminative knowledge between
such similar classes can be explicitly learned, and the distillation of such dis-
criminative knowledge would likely reduce the confusion between each new class
and its similar old class(es).

To find the old class(es) similar to each new class, the feature extractor part
of the old classifier is used to output the feature representation of each new-
class data and stored old-class data, and then the class-centre representation
is obtained respectively for each class by averaging the feature representations
of all data belonging to the same class. The Euclidean distance from the class-
centre representation of the new class to that of each old class is then used to
select the most similar (i.e., closest) old class(es) for the new class (Fig. 2, Step
1). While sometimes one new class may have multiple similar old classes and
another new class may have no similar old classes, without loss of generality, the
same number of similar old classes is selected for each new class in this study
and no old class is selected multiple times at each learning round.

Once the old classes similar to the new classes are selected, the expert clas-
sifier can be trained using all the training data of the new classes and the stored
similar old-class data (Fig. 2, Step 2). Since only very limited number of old data
is available for each old class, the training data set is imbalanced across classes,
which could make the classifier focus on learning knowledge of the large (i.e.,
new) classes. To alleviate the imbalance issue, the expert classifier is initially
trained (for 80 epochs in this study) using all the available training set and then
fine-tuned (for 40 epochs in this study) with balanced dataset across classes by
down-sampling the dataset of new classes.

3.3 Knowledge Distillation

The expert classifier, together with the old classifier from the previous round
of continual learning, is used to jointly teach the new classifier based on the
knowledge distillation strategy. Suppose D = {(xi,yi), i = 1, . . . , N} is the
collection of all new classes of training data at current learning round and the
stored small old-class data, where xi is an image and the one-hot vector yi is the
corresponding class label. For image xi, let zi = [zi1, zi2, . . . , zit]T denote the logit
output (i.e., the input to the last-layer softmax operation in the CNN classifier)
of the expert classifier, and ẑi = [ẑi1, ẑi2, . . . , ẑit]T denote the corresponding
logit output of the new classifier (Fig. 2, Step 3, outputs of the new classifier
with dashed red lines linked), where t is the number of outputs by the expert
classifier. Then, the distillation of the knowledge from the expert classifier to the
new classifier can be obtained by minimizing the distillation loss Ln,

Ln(θ) = − 1
N

N∑

i=1

t∑

j=1

pij log p̂ij , (1)
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where θ represents the model parameters of the new classifier, and pij and p̂ij
are from the temperature-tuned softmax operation,

pij =
exp (zij/Tn)

∑t
k=1 exp (zik/Tn)

, p̂ij =
exp (ẑij/Tn)

∑t
k=1 exp (ẑik/Tn)

, (2)

and Tn ≥ 1 is the temperature coefficient used to help knowledge distillation [7].
Since the expert has been trained to discriminate new classes from visually
similar old classes, the knowledge distillation from the expert classifier to the
new classifier is expected to help the new classifier gain similar discriminative
power. In other words, with the distillation, the new classifier would become less
confused with the new classes and visually similar old classes, resulting in better
classification performance after each round of continual learning.

Besides the knowledge distillation from the expert classifier, knowledge from
the old classifier can be distilled to the new classifier in a similar way, i.e., by
minimizing the distillation loss Lo,

Lo(θ) = − 1
N

N∑

i=1

s∑

j=1

qij log q̂ij , (3)

where s is the number of old classes learned so far, and qij and q̂ij are respectively
from the temperature-tuned softmax over the logit of the old classifier and the
corresponding logit part of the new classifier (Fig. 2, Step 3, outputs of the new
classifier with dashed green lines linked), with the distillation parameter To.

As in general knowledge distillation strategy, besides the two distillation
losses, the cross-entropy loss Lc over the training set D based on the output
of the new classifier is also applied to train the new classifier. In combination,
the new classifier can be trained by minimizing the loss L,

L(θ) = Lc(θ) + λ1Lo(θ) + λ2Ln(θ) , (4)

where λ1 and λ2 are trade-off coefficients to balance the loss terms.
The proposed distillation strategy is clearly different from existing distilla-

tions for continual learning. Most distillation-based continual learning methods
only distill knowledge from the old class to the new class at each learning round.
The most relevant work is the dual distillation [18] which reduces catastrophic
forgetting with the help of two classifiers (called expert classifier and old classi-
fier respectively), where the expert classifier is trained only for new classes and
then, together with the old classifier, distilled to the new classifier. In compar-
ison, the expert classifier in our method is trained to learn not only the new
classes but also likely confusing old classes, particularly aiming to alleviate the
class confusion issue. Therefore, our method extended the dual distillation but
with a brand new motivation. Most importantly, the proposed discriminative
distillation can be easily combined with most existing continual learning meth-
ods by simply adding the loss term Ln(θ) during classifier training at each round
of continual learning.
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Table 1. Statistics of datasets. [75, 2400]: size range of image height and width.

Dataset #class Train/class Test/class Size

CIFAR100 100 500 100 32 × 32

mini-ImageNet 100 ∼1,200 100 [75, 2400]

ImageNet 1000 ∼1,200 100 [75, 2400]

4 Experiments

4.1 Experimental Settings

The proposed method was evaluated on three datasets, CIFAR100 [15], the
full ImageNet dataset [3], and a subset of ImageNet which contains randomly
selected 100 classes (Table 1). During model training, each CIFAR100 image was
randomly flipped horizontally, and each ImageNet image was randomly cropped
and then resized to 224×224 pixels. On each dataset, an CNN classifier was first
trained for certain number (e.g., 10, 20) of classes, and then a set of new classes’
data were provided to update the classifier at each round of continual learning.
Ths SGD optimizer (batch size 128) was used with an initial learning rate 0.1.
The new classifier at each round of continual learning was trained for up to
100 epochs, with the training convergence consistently observed. ResNet32 and
ResNet18 were used as the default CNN backbone for CIFAR100 and ImageNet
(including mini-ImageNet) respectively, and λ1 = λ2 = 1.0, Tn = To = 2.0.
One similar old class was selected for each new class in the expert classifier.
Following iCaRL [24], the herding strategy was adopted to select a small subset
of images for each new class with a total memory size K. For CIFAR100 and
mini-ImageNet, the memory size is K = 2000. And for ImageNet, K = 20000.

After training at each round, the average accuracy over all learned classes
so far was calculated. Such a training and evaluation process was repeated in
next-round continual learning. For each experiment, the average accuracy over
three runs were reported, each run with a different and fixed order of classes to
be learned. All baseline methods were evaluated on the same orders of continual
learning over three runs and with the same herding strategy for testing.

4.2 Effectiveness Evaluation

The proposed discriminative distillation can be plugged into most continual
learning methods. Therefore, the effectiveness of the proposed distillation is
evaluated by combining it respectively with existing continual learning methods,
including LwF [17], iCaRL [24], UCIR [8], and BiC [27]. All the four methods
are distillation-based, and therefore the only difference between each baseline
and the corresponding proposed method is the inclusion of the discriminative
distillation loss term during classifier training. The inference method proposed
in the original papers were adopted during testing (nearest-mean-of-exemplars
for iCaRL, and softmax output for LwF, UCIR, and BiC). The evaluation was
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Fig. 3. Continual learning of 5 (first row), 10 (second row), and 20 (third row) new
classes at each round with CIFAR100 dataset. Columns 1–4 (blue curve): performance
of LwF, iCaRL, UCIR, BiC; Columns 1–4 (orange curve): performance of the proposed
method built on the corresponding baseline. (Color figure online)

firstly performed on the CIFAR100 dataset. As shown in Fig. 3, when continu-
ally learning 5 classes (first row), 10 classes (second row), and 20 classes (third
row) at each round respectively, each baseline method was clearly outperformed
by the combination of the proposed discriminative distillation with the baseline,
with around absolute 2%–5% better in accuracy at each round of continual learn-
ing. The consistent improvement in classification performance built on different
continual learning methods supports the effectiveness of the proposed discrim-
inative distillation for continual learning. Similar results were obtained from
experiments on mini-ImageNet (Fig. 4) and ImageNet (Fig. 5), suggesting that
the proposed discriminative distillation is effective in various continual learning
tasks with different scales of new classes at each learning round.

To further investigate the effect of the proposed discriminative distilla-
tion on reducing the confusions between similar classes, the total reduction in
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Table 2. Effect of the proposed distillation on the reduction of class confusion and
catastrophic forgetting. Each value is the number of images incorrectly classified by
the new classifier at that learning round.

Types Methods Learning rounds

2 3 4 5

Confusion UCIR 193 547 1037 1525

UCIR+ours 178 524 986 1399

Forgetting UCIR 328 1002 1813 2706

UCIR+ours 309 944 1633 2484

classification error compared to the baseline method at each round of learning
was divided into two parts, one relevant to class confusion and the other to
catastrophic forgetting. For CIFAR100, it is well-known that the dataset con-
tains 20 meta-classes (e.g., human, flowers, vehicles, etc.) and each meta-class
contains 5 similar classes (e.g., baby, boy, girl, man, and woman). At any round
of continual learning, if the trained new classifier mis-classify one test image into
another class which shares the same meta-class, such an classification error is
considered partly due to class confusion (Table 2, ‘Confusion’). Otherwise, if one
test image of any old class is mis-classified to another class belonging to a differ-
ent meta-class, this classification error is considered partly due to catastrophic
forgetting (Table 2, ‘Forgetting’). Table 2 (2nd row) shows that the proposed
discriminative distillation did help reduce the class confusion error compared to
the corresponding baseline (1st row) at various learning rounds. In addition, the
discriminative distillation can also help reduce catastrophic forgetting (Table 2,
last two rows), consistent with previously reported results based on distillation
of only new classes from the expert classifier [18].

Fig. 4. Continual learning of 10 new classes at each round on mini-ImageNet.

The effect of the discriminative distillation was also visually confirmed with
demonstrative examples of attention map changes over learning rounds (Fig. 6).
For example, while the classifier trained based on the baseline UCIR can attend
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Fig. 5. Continual learning of 100 new classes at each round on ImageNet.

Fig. 6. Demonstrative attention maps over learning rounds from the baseline UCIR
(upper row) and the correspondingly proposed method (bottom row). Input images are
from CIFAR100 and mini-ImageNet, and each attention map (heatmap overlapped on
input) for the ground-truth class was generated by Grad-CAM [26] from the trained
classifier at each learning round. The tick or cross under each image represents the
classification result.

to some part of the ‘man’ face over learning rounds, this test image was mis-
classified at the last round (Fig. 6, top row, left half). This suggests that the
mis-classification is probably not due to forgetting old knowledge (otherwise the
attended region at last learning round would be much different from that at the
first round). In comparison, the classifier based on the correspondingly proposed
method learned to attend to larger face regions and can correctly classify the image
over all rounds (Fig. 6, second row, left half), probably because the expert classifier
learned to find that more face regions are necessary in order to discriminate differ-
ent types of human faces (e.g., ‘man’ vs. ‘women’) and such discriminative knowl-
edge was distilled from the expert classifier to the new classifier during continual
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Fig. 7. Ablation study built on different baseline methods, with 20 new classes learned
at each round on CIFAR100. X-axis: number of similar old classes selected for each new
class during continual learning; ‘0’ means the expert classifier only learns new classes,
and ‘B’ means the expert classifier is not applied during learning. Y-axis: the mean
classification accuracy over all the classes at the final round (Left), or the average of
mean class accuracy over all rounds (Right).

learning. Similar results can be obtained from the other three examples (Fig. 6,
‘phone’, ‘file cabinet’, and ‘bread’ images).

4.3 Ablation Study

The effect of the discriminative distillation is further evaluated with a series of
ablation study built on different baseline methods. As Fig. 7 shows, compared to
the baselines (‘Baseline’ on the X-axis) and the dual distillation which does not
learn any old classes in the expert classifier (‘0’ on the X-axis), learning to classify
both new and similar old classes by the expert classifier and then distilling the
discriminative knowledge to the new classifier (‘1’ to ‘4’ on X-axis) often improves
the continual learning performance, either at the final round (Left) or over all
rounds (Right). Adding more old classes for the expert classifier does not always
improve the performance of the new classifier (Fig. 7, Left, red curve), maybe
because the inclusion of more old classes distracts the expert classifier from
learning the most discriminative features between confusing classes.

5 Conclusions

Continual learning may be affected not only by catastrophic forgetting of old
knowledge, but also by the class confusion between old and new knowledge. This
study proposes a simple but effective discriminative distillation strategy to help
the classifier handle both issues during continual learning. The distillation com-
ponent can be flexibly embedded into existing approaches to continual learning.
Initial experiments on natural image classification datasets shows that explicitly
handling the class confusion issue can further improve continual learning perfor-
mance. This suggests that both catastrophic forgetting and class confusion may
need to be considered in future study of continual learning.
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