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Abstract. Successful applications of deep learning often depend on
large amount of training data. However, in practical image recognition
tasks, available training data are often limited or imbalanced across
classes, causing the over-fitting issue or the prediction bias issue during
model training. In this paper, based on word embedding models from
studies in natural language processing, the prior knowledge about the
relationships between image classes is utilized to help train more gen-
eralizable classifiers under the condition of limited or class-imbalanced
training data. Such inter-class relational knowledge is captured in the
word embedding vectors for the textual names of image classes. Using
these word embedding vectors as soft labels for corresponding image
classes, the feature extractor part of a deep learning model can be guided
to learn to extract visual features which contain both class-specific and
class-shared information. Experiments on multiple image classification
datasets confirm that the proposed learning framework helps improve
model performance when training data is limited or class-imbalanced.

Keywords: Prototype learning · Image classification · Limited data ·
Imbalance data · Soft label

1 Introduction
Deep learning has shown its superior performance in various image recognition
applications with the help of sufficient number of training data, such as for
face recognition and intelligent diagnosis of specific diseases [1–3]. However, in
practice, it may be difficult or even impossible to collect enough number of
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training data for certain less frequent classes, e.g., images of rare diseases [4–
6]. In this case, deep learning models would often suffer from limited or class-
imbalanced training data (Fig. 1), due to over-fitting of the model when all classes
of training data are limited or/and biased prediction toward frequent classes
when training data are class-imbalanced.

Fig. 1. Model performance (Left) often suffers from limited (Middle left) or imbalanced
(Middle right) training data compared to sufficient training data (Right).

To alleviate the over-fitting issue, two main groups of approaches have been
developed for training of deep learning models. The first group is based on trans-
ferring knowledge from a relatively large auxiliary dataset which contains differ-
ent classes but in content is often visually similar to the dataset of the current
task. The auxiliary dataset is often used to train a feature extractor which is then
fixed or fine-tuned for the current task, as in training of matching network [7],
prototypical network [8] and relation network [9] for few-shot learning. However,
in some scenarios like intelligent medical diagnosis, such large auxiliary dataset
is generally not available because of difficulty in collecting large-scale data of
many other diseases. Different from the first group of approaches, the second
group does not reply on auxiliary datasets but employs various data augmen-
tation techniques to increase the amount of the original training data. Besides
the conventional data augmentations like random cropping, scaling, rotating,
flipping and color jittering of each training image, advanced augmentation tech-
niques including Cutout [10], Random erasing [11] and Grid mask [12] have been
recently developed to further alleviate the over-fitting issue. These augmenta-
tions operate directly on images and may not effectively introduce additional
high-level semantic information compared with original data, thus still often lim-
ited for improving generalizability of deep learning models. In addition, training
tricks like label smoothing have also shown to be able to improve model gen-
eralization. However, such tricks do not consider specific semantic relationships
between classes.

Besides alleviating the over-fitting issue, class-imbalanced recognition tasks
also need to reduce the prediction bias issue. Traditional class-balancing
approaches include the class re-weighting [13] to increase the importance of
training samples from less frequent classes in the loss function, and the re-
sampling [14] of training samples to make training data balanced across classes.
More recently developed approaches mainly focus on the loss design by consider-
ing the instance-level prediction challenge [15] or class-level distribution [16]. Due
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to the essential data imbalance between small-sample (i.e., minority) and large-
sample (i.e., majority) classes, these class-balancing approaches often achieve
trade-off in accuracy between the majority and minority classes, particularly
resulting in under-fitting of majority classes and/or over-fitting of minority
classes [17].

In this paper, presuming that no auxiliary dataset is available, we propose a
simple yet novel strategy to embed prior knowledge into deep learning models
to help train more generalizable models with limited or imbalanced data. The
prior knowledge is about the semantic relationships between classes, and such
semantic relationships are implicitly captured by word embeddings from certain
pre-trained natural language processing (NLP) model. The prior knowledge can
also be leveraged for computer vision domain [18]. In this model, semantically
related words have more similar feature vectors. By associating each (image)
class with a specific embedding vector of the class-corresponding word(s), such
semantic vector can be considered as the soft label for the class. The semantic
relationship between any two classes can be implicitly represented by the prox-
imity between the corresponding two soft labels. Guided by these semantically
related soft labels, the feature extractor of a deep learning model can be trained
to learn to extract visual features capturing inter-class relationships even with
limited or class-imbalanced training data. Considering that knowledge distilla-
tion with soft labels has shown its effectiveness in transferring knowledge from
one model to another in plenty of studies, it is expected that the soft labels
from the NLP model can also help transfer the prior knowledge about class rela-
tionships into the deep learning model for image recognition tasks. Since soft
labels do not affect designs of model architectures, the proposed strategy can be
considered as a plug-in component and flexibly applied to any model backbones.
The contributions of this study are summarized below.

• Prior knowledge about class relationships is introduced as soft labels to help
train more generalizable models with limited or class-imbalanced training
data.

• A learning framework is proposed to effectively train the feature extractor
of deep learning models which can capture inter-class relationships with the
help of soft labels using limited or class-imbalanced training data.

• Extensive empirical evaluations on multiple image classification tasks with
limited data and imbalanced data confirmed the effectiveness and generaliz-
ability of the proposed approach.

2 Methodology

The main objective of training a deep learning model for image recognition is to
make the model learn knowledge of classes from training images such that it can
accurately recognize any new image. However, with limited or class-imbalanced
training data, it becomes challenging for the model to well learn the knowledge
of particularly small-sample classes. In this case, transferring or embedding prior
knowledge of these classes to the model would help the model effectively grasp
the knowledge of classes. Here, the word embedding vector of each (image) class
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is novelly considered as the soft label of the class, and thus inter-class relationship
as part of class knowledge is naturally embedded into the training process of the
deep learning model.

Fig. 2. Illustration of the proposed learning framework. Soft labels for all classes are
generated based on a pre-trained and fixed word embedding model. Such soft labels
capture semantic inter-class knowledge learned by the word embedding model with
enormous amount of text data. The feature extractor is trained with the help of soft
labels to learn to extract both class-shared and class-specific features even when train-
ing samples are limited or class-imbalanced.

2.1 Learning Framework

The proposed learning framework is illustrated in Fig. 2. The goal is to train the
feature extractor F for image recognition of C classes. Suppose the soft label
wc ∈ R

D of the c-th class (c = 1, . . . , C) has been obtained based on a pre-
trained word embedding model W (see Sect. 2.2 for details). Given the training
set D = {(xi,yi), i = 1, . . . , N}, where xi is the i-th training image and yi

is the corresponding ground-truth one-hot label vector, denote by fi = F (xi)
the D-dimensional vector output of the feature extractor F for input xi, and
zi ∈ {wc, c = 1, . . . , C} the corresponding soft label of image xi. If the feature
extractor F is trained such that its output fi is close to the corresponding soft
label zi for each image xi, the feature extractor would be expected to be able to
extract visual features which contain inter-class relationships as in the soft label
vectors. Thus, using the soft labels to guide the training of the feature extractor
would help it learn the prior inter-class relational knowledge even under the
condition of limited or class-imbalance training data. The guided training can
be achieved by the minimization of the cosine distance loss L [19], which is
actually a special form of the cross-entropy loss based on the cosine similarity
between the feature extractor output fi and each of the C soft labels, i.e.,

L = − 1
N

N∑

i=1

log
es(fi,zi)/τ

∑C
c=1 es(fi,wc)/τ

. (1)

Here s(fi,wc) is the cosine similarity between vectors fi and wc, and τ is the tem-
perature hyper-parameter (set 1.0 in this study). Note that since the soft labels
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of all the C classes participate in the calculation of the cosine distance loss for
each image xi, the feature extractor would be trained to minimize the distance
(i.e., maximize similarity) between each fi and the corresponding soft label zi,
and meanwhile to maximize the distance between fi and the soft labels of all the
other classes. In this way, the feature extractor can be trained to extract more
discriminative features for those semantically similar classes (having similar soft
labels), otherwise the corresponding similar soft labels would cause relatively
larger loss. Consequently, the trained model would be more capable of discrimi-
nating between classes.

Once the feature extractor is well trained, it can be used to directly predict
class of any new (test) image based on the nearest soft label, i.e., finding the class
whose soft label vector is nearest to the vector output of the feature extractor.

2.2 Soft Label Generation

The generation of soft label for each class is mainly based on a pre-trained
word embedding model. The word embedding model (e.g., Word2Vec [20] and
GloVe [21]) is often trained in a self-supervised manner on a large-scale text
dataset (like YFCC100M [22]), e.g., by predicting the masked word based on its
context words or by predicting its context words based on the centered word in a
sentence [20]. Once the self-supervised model is well trained, its feature encoder
part (after removing the task-specific model head) can then be used as the word
embedding model, i.e., the output of the feature encoder for each input word is
the semantic representation of the input word in the embedded feature space.
Since the word embedding model is trained based on millions or even billions
of sentences, the embedded feature vector for each word captures the potential
semantic relationships between the word and each other word. In particular, two
words which are semantically closely related (e.g., ‘boy’ and ‘man’) are often
closer to each other in the embedded feature space [20].

Fig. 3. Cosine similarity between soft labels of every paired classes. Left: each pixel
represents the cosine similarity between the soft labels of the corresponding two image
classes, with brighter pixels representing higher cosine similarities. Right: exemplar
images of two classes with higher similarity (as indicated within the red box on the
left) between corresponding soft labels. Both visually similar and class-specific features
exist in the images. (Color figure online)
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Based on the word embedding model, the soft label of each image class can
be generated as follows. When one image class can be named by a single word
(e.g., class of ‘Cat’), then the output of the word embedding model for the word
can be directly used as the soft label of the image class. On the other hand, when
one image class is named by a sequence two or more words (e.g., class of ‘Great
white shark’), the weighted sum of the outputs of the word embedding model
for the multiple words can be used as the soft label of the image class. In this
study, simply the average of the outputs is adopted to represent the soft label
for each multi-word class, although potentially more adaptive weight setting can
be further investigated in future work. Figure 3 (Left) shows the cosine similar-
ities between the soft labels of every two classes in the well-known CIFAR100
dataset. For those paired classes which have higher cosine similarities, similar
visual features do often appear in the images of the classes, as demonstrated
in Fig. 3 (Right). In this case, the soft label will guide the feature extractor to
learn to extract such shared visual features during model training, meanwhile
to extract class-specific features to discriminate between these semantically sim-
ilar classes. Extraction of such more comprehensive (i.e., both class-shared and
class-specific) features particularly from small-sample classes indicates that the
feature extractor can be trained to extract representative features for each class,
even with limited of imbalanced training samples.

2.3 Comparison with Relevant Methods

The soft labels can be considered as class centers in the semantic feature space.
Different from the proposed generation of soft labels from a word embedding
model in this study, several previous studies have proposed to directly learn one
or multiple class centers for each class during the training of the classifier, where
the class centers and model parameters are learned jointly. Examples include
the center loss [23], the convolutional prototype learning (GCPL) [24] and the
prototypical networks [8]. Since all these methods learn class centers solely based
on training data, it is expected that the jointly learned classifier and the class
centers would become over-fitting particularly when training data are limited or
class-imbalanced. In comparison, the proposed soft label in this study is based
on the word embedding model which is trained on large-scale text data, and
therefore the semantic inter-class knowledge in the soft label may help train a
more generalizable model with limited training samples.

3 Experiments

3.1 Experimental Setting

To evaluate the effectiveness and generalizability of the proposed method for
image recognition under the condition of limited or class-imbalanced training
samples, three public image datasets, i.e., CIFAR-10, CIFAR-100, and mini-
ImageNet, were employed to create the limited (i.e., small-sample) and class-
imbalanced training sets. For small-sample training sets, three versions were cre-
ated from each original dataset, with 50, 100, and 200 images randomly sampled
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from each class of CIFAR-10 and CIFAR-100 respectively, and 10, 50, and 100
images per class randomly sampled from mini-ImageNet respectively. To create
the class-imbalanced versions, the number of training samples were exponentially
reduced across classes, while the test set was kept class-balanced. Denote by ρ
the imbalance ratio between sample sizes of the largest class and the smallest
class. ρ was set 10 and 100 respectively in relevant experiments.

In experiments, Resnet18 was used as the default model backbone, and two
word embedding models GloVe [21] and Bert [25] were used to generate 300-
dimensional and 768-dimensional soft labels respectively, with GloVe used by
default in each experiment. During model training, conventional data augmenta-
tions were applied on each training set, including random cropping and horizon-
tal flipping for each image. Stochastic gradient descend with momentum 0.9 and
weight decay 10−4 was used to optimize each model for 200 epochs. The batch
size is 128 for CIFAR-10 and CIFAR-100 and 64 for mini-ImageNet. The initial
learning rate 0.1 was decayed by 0.1 respectively on epochs 120, 160, and 180.
The linear warm-up learning rate schedule was also used for the first 5 epochs.
During testing, the average and standard deviation of classification accuracy over
five runs were reported. In addition, for the model trained with class-imbalanced
data, the classification accuracy on larger-size classes (i.e., those 1/3 classes with
larger training samples), smaller-size classes (i.e., those 1/3 classes with smaller
training samples), and medium-size classes (i.e., the remaining 1/3 classes) were
also reported respectively.

3.2 Effectiveness Evaluation with Limited Training Data

The proposed method was first evaluated with limited training samples. The base-
line methods for comparison include the basic cross-entropy loss (CE), the center
loss (CenterLoss) [23], the convolutional prototype learning (GCPL) [24], the pro-
totypical network (ProtoNet) [8], and the label smoothing (LabelSmooth). The
released source codes and suggested settings from the original studies were adopted
forCenterLoss,GCPLandProtoNet. Smooth factor of label smoothingwas set 0.1.

As shown in Tables 1 and 2, compared to all the baseline methods (rows
1–5), the proposed method (last two rows) significantly improves model per-
formance when the training samples are very limited, i.e., with 50 images per
class on CIFAR-10 and CIFAR-100, and 10 images per class on mini-Imagenet.
With relatively more training samples (i.e., respectively 100 and 200 images per
class on CIFAR, and 50 and 100 images per class on mini-Imagenet), the pro-
posed method still achieves satisfactory performance, often slightly better than
the strongest baseline at each setting. Additional evaluations on different model
backbones (e.g., ResNet50 and VGG16, Table 3) also confirm the effectiveness
of the proposed method under the condition of limited training samples. Fur-
thermore, when the proposed method is combined with existing methods like
Cutout [10], Random erasing [11], and Grid mask [12], the classification perfor-
mance is often significantly boosted compared to these individual methods, as
demonstrated in Fig. 4 with varying number of training samples on the three
datasets. These results support that the inter-class knowledge in the soft label
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can help train more generalizable models with limited training samples, and this
method can be flexibly combined with (some of) existing strategies to further
improve their effectiveness.

Table 1. Performance comparison on datasets with limited training data from CIFAR.
‘50/100/200’: training samples per class. In brackets: standard deviations.

Methods CIFAR-10 CIFAR-100

50 100 200 50 100 200

CE 37.44 (0.74) 48.68 (0.41) 54.51 (0.45) 31.76 (1.31) 49.99 (0.94) 63.41 (0.79)

CenterLoss 35.44 (0.99) 47.17 (1.45) 59.04 (1.28) 26.49 (0.40) 50.53 (0.19) 64.61 (1.16)

GCPL 35.38 (1.18) 48.65 (0.93) 63.25 (0.52) 27.10 (1.02) 51.38 (0.40) 64.34 (0.85)

ProtoNet 36.47 (1.17) 49.78 (0.87) 61.73 (0.74) 29.65 (1.48) 49.90 (0.45) 61.53 (0.70)

LabelSmooth 35.99 (1.48) 48.80 (0.85) 63.07 (0.25) 34.04 (1.21) 52.13 (0.32) 64.44 (0.92)

Ours (Bert) 41.85 (0.34) 52.41 (0.88) 64.03 (0.50) 39.22 (0.21) 52.19 (0.35) 64.17 (0.15)

Ours (GloVe) 41.74 (0.57) 51.23 (0.50) 63.56 (0.56) 39.51 (0.36) 53.06 (0.36) 64.84 (0.57)

Table 2. Performance comparison on datasets with limited training data from mini-
ImageNet. ‘10/50/100’: training samples per class. In brackets: standard deviations.

Methods 10 50 100

CE 13.25 (0.16) 39.68 (0.68) 51.79 (0.11)

CenterLoss 13.71 (0.26) 40.96 (0.91) 54.61 (0.50)

GCPL 12.45 (0.95) 42.03 (0.83) 54.81 (0.73)

ProtoNet 13.57 (0.89) 41.03 (1.35) 52.00 (0.73)

LabelSmooth 13.80 (0.23) 42.16 (0.34) 53.98 (0.65)

Ours (Bert) 18.31 (0.34) 42.75 (0.18) 54.24 (0.38)

Ours (GloVe) 17.62 (0.50) 43.37 (0.34) 55.03 (0.61)

Table 3. Performance comparison on different model backbones with limited (50 per
class) training images

Methods Resnet50 Vgg16

CIFAR-100 Mini-ImageNet CIFAR-100 Mini-ImageNet

CE 26.08 (0.69) 40.56 (0.68) 25.45 (1.48) 29.54 (0.92)

CenterLoss 24.17 (0.65) 39.16 (1.34) 21.83 (1.18) 28.13 (1.48)

GCPL 26.79 (1.21) 39.23 (1.44) 25.20 (1.20) 29.62 (1.09)

ProtoNet 31.95 (0.66) 40.43 (1.01) 28.30 (1.09) 28.49 (1.26)

LabelSmooth 29.56 (0.28) 41.47 (0.27) 29.79 (1.13) 29.54 (0.28)

Our (Bert) 32.13 (0.99) 43.78 (0.69) 38.20 (0.98) 39.64 (0.59)

Our (GloVe) 33.25 (0.53) 44.01 (0.19) 33.85 (0.51) 39.06 (0.86)
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Fig. 4. Performance comparison based on limited training samples between each base-
line and its combination with the proposed method. The baselines include Cutout,
Random erasing, and Grid mask. Vertical lines for standard deviations.

Table 4. Performance comparison with class-imbalanced training set from CIFAR-10.
Test set is class-balanced.

Methods ρ = 100 ρ = 10

All Larger Medium Smaller All Larger Medium Smaller

CE 71.20 92.73 72.63 55.20 87.35 94.17 85.23 85.08

Resample 70.64 92.23 70.30 53.27 87.92 94.67 84.40 85.20

Reweight 70.39 90.50 69.90 55.67 87.61 94.20 84.50 85.50

Ours 72.13 93.27 73.33 55.38 88.21 95.00 84.93 85.58

LDAM 76.48 93.70 76.50 63.55 88.80 94.27 85.27 87.35

LDAM+Ours 77.30 93.93 76.73 65.25 89.17 95.13 85.93 87.55

CB Focal 74.10 93.37 74.80 59.12 88.88 93.33 85.37 88.17

CB Focal+Ours 74.63 93.19 75.53 60.06 89.19 93.70 86.53 87.05

3.3 Evaluation with Imbalanced Training Data

The proposed method also helps under the condition of class-imbalanced train-
ing data. As shown in Tables 4, 5 and 6, the proposed method (4-th row, ‘Ours’)
overall outperforms the baselines (rows 1–3) under all settings (‘All’ columns,
top-1 accuracy on all classes; note that test data are class-balanced). Interest-
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Table 5. Performance comparison with class-imbalanced training set from CIFAR-100.
Test set is class-balanced.

Methods ρ = 100 ρ = 10

All Larger Medium Smaller All Larger Medium Smaller

CE 39.85 67.79 38.97 13.59 56.97 71.97 58.67 41.97

Resample 35.26 66.45 36.97 13.03 55.78 70.45 57.58 39.79

Reweight 39.56 67.58 38.79 13.85 56.19 68.85 58.09 42.05

Ours 41.81 69.36 41.33 15.53 60.35 73.48 61.24 46.74

LDAM 42.04 69.94 42.03 14.97 60.14 72.91 60.33 47.56

LDAM+Ours 42.49 69.85 43.58 14.88 60.29 73.45 60.82 46.91

CB Focal 39.85 67.79 38.97 13.59 57.85 70.06 58.52 45.35

CB Focal+Ours 42.87 70.94 42.06 16.41 62.05 75.33 62.06 49.15

Table 6. Performance comparison with class-imbalanced training set from mini-
ImageNet. Test set is class-balanced.

Methods ρ = 100 ρ = 10

All Larger Medium Smaller All Larger Medium Smaller

CE 50.92 79.88 50.70 23.03 70.04 83.06 69.61 57.82

Resample 46.25 77.18 45.15 20.12 68.99 82.70 69.03 55.65

Reweight 47.44 78.65 48.54 23.09 69.20 81.97 68.82 57.18

Ours 51.80 80.03 52.67 23.56 71.35 84.88 72.45 59.29

LDAM 52.20 79.36 52.12 25.91 70.50 81.15 70.42 58.94

LDAM+Ours 52.41 79.39 52.97 26.41 71.12 82.76 71.12 58.82

CB Focal 51.66 80.03 51.97 24.47 69.08 79.70 69.21 58.65

CB Focal+Ours 51.83 79.79 51.20 26.18 70.20 80.73 70.06 59.59

ingly, the proposed method improves the performance not only on those classes
with smaller training samples (‘Smaller’ columns) under most settings, but also
on those classes with larger-size (‘Larger’) and medium-size (‘Medium’) train-
ing samples. In addition, as with limited training data, the proposed method
can also further improve the performance of existing methods by fusing them
together (Tables 4, 5 and 6, last four rows). For example, models trained with
the combination of CB Focal and the proposed method achieve the best classifi-
cation performance on CIFAR-100 with different imbalance ratios. These results
suggest that the proposed method can be applied to class-imbalanced image
recognition either individually or in combination with existing strategies.

3.4 Ablation Study

To confirm the soft labels from a pre-trained word embedding model is essential
to improve model performance with limited or class-imbalanced training set, an
ablation study was performed by replacing the soft labels with randomly gen-
erated soft vectors. The element in each random vector was randomly sampled
from uniform distribution. Figure 5 shows that, under the conditions of both lim-
ited and class-imbalanced training sets, the proposed soft labels often perform
better than the randomly generated soft labels, while the latter is comparable to
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(i.e., either slightly better or worse than) the basic CE method under various set-
tings. This supports that the implicit inter-class relationship in soft labels from
the pre-trained word embedding model may help classifiers gain more semantic
knowledge and generalizable performance.

Fig. 5. Ablation study of soft labels. Left: classification performance of models with
limited training set by the CE baseline, the randomly generated soft labels, and the
proposed soft labels respectively. Right: performance of models with class-imbalanced
training set.

4 Conclusions

In this study, soft labels containing inter-class relationships are proposed to
guide the training of image recognition models under the condition of limited
or class-imbalanced training samples. Extensive evaluations with three image
classification datasets consistently support that the proposed learning frame-
work is effective in improving the performance of classifiers, and its combination
with existing strategies for small-sample or class-imbalanced learning can further
improve the performance of these strategies. The proposed learning framework
might also help train classifiers under more extreme conditions, such as those
in zero-shot learning and open-set recognition. These extensions will be investi-
gated in future work.
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