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Abstract. Automated segmentation of skin lesions from dermoscopy
images is helpful for the diagnosis and treatment of skin cancers. How-
ever, due to small annotated training set and the large visual difference
in skins and lesions between subjects, the generalization performance
of segmentation models are often limited. Inspired by the transductive
learning for image classification, we propose a transductive segmentation
approach for skin lesion segmentation, by choosing some of the pixels
in test images to participate the training of any segmentation model to-
gether with the training set. In this way, visual features in the test images
can be effectively learned during model training. Comprehensive evalua-
tions with different model structures and transductive learning strategies
showed that the proposed transductive segmentation approach always
improve the performance of the corresponding state-of-the-art segmen-
tation models in skin lesion segmentation.
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1 Introduction

Skin cancer is one of the most common cancers, with over 5,000,000 new patients
every year in the United States [5]. To effectively diagnose skin cancers and
evaluate the effect of various treatments, it is necessary to record and measure
the progression of skin lesion regions over time. However, it is time consuming
for dermatologists to accurately delineate skin lesion regions. In this case, the
state-of-the-art automated image segmentation techniques could potentially help
clinicians to efficiently segment skin lesion regions from healthy parts.

Multiple deep learning models have recently been developed for image seg-
mentation, including the first fully convolutional network (FCN) [8], the well-
known U-Net [9] which was initially proposed for medical image segmentation
by extending the original FCN model with skip-connections between the down-
sample and the corresponding up-sample layers, and the state-of-the-art seg-
mentation model DeepLab [2, 3]. For the segmentation task of skin lesions, the
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method with top accuracy applied target detection on the skin lesion to reduce
reverse effect from different size of skin lesion [4].This approach is cumbersome
in training and requires a large number of pre-trained models, so we did not
perform detection on our segmentation pipeline. But it should be noted that
the baseline models we used is as same as baseline models in previous work.Due
to the difficulty in annotating medical images for segmentation, deep learning
models are often over-trained with limited annotated medical images. The over-
training becomes exacerbated when there is large difference in images between
subjects. In this case, images of certain subjects from the test set cannot be
typically represented by any image from the training set, and therefore even
more training data would not fundamentally solve the problem of limited gener-
alization performance on the test data from new subjects. Unfortunately, such
subject-level difference frequently appears in skin image analysis, where each
subject may demonstrate distinctive visual features.

To reduce the effect of the subject-level difference, transfer learning is often
applied in image classification and segmentation tasks [12, 13], by pretraining
a model on another large (either natural or medical) dataset and then fine-
tuning the pre-trained model on the task data. However, transfer learning based
on a large set of natural images may be limited in improving the performance
on medical images, while it is often difficult or infeasible to obtain a large set
of medical images to pre-train a segmentation model for later-on use. Another
solution is to employ ensemble models by combining multiple individual ones,
including the well-known Bagging [1] and Boosting [6] methods. However, these
learning strategies cannot fundamentally solve the issue caused by the subject
difference.

Instead of exploring novel model architectures or knowledge from additional
dataset to help improve segmentation performance on medical images, we pro-
pose to directly learn to extract knowledge from the test data during model
training. Inspired by transductive learning for classification tasks [11], which
tries to use both the annotated training data and the un-annotated test data
during model training, we hypothesize that extraction of information from test
data and then embedding to the process of model training would largely help
the final model to effectively segment the test images. In transductive learning
for classification tasks, considering that there are always incorrect prediction on
test data by the (initially trained) model, often only those of the test data with
high prediction confidence are selected to join the model training, where the
predicted label for the selected test data were considered as the ground truth.

While transductive learning has been applied for image classification tasks [10],
there is little work particularly for medical image segmentation tasks. In this pa-
per, we propose a transductive learning approach to the segmentation of skin
lesion regions, aiming to improve the segmentation performance on the test im-
ages by directly learning subject-level visual features from test images during
model training. Different from image classification tasks in which each image
has a class label, image segmentation can be considered as a pixel-level classifi-
cation task, in which different pixels in one image may have different class labels
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and prediction confidence levels. Therefore, we propose choosing high-confidence
pixels from test images during transductive learning rather than using all pixels
of each image. Experiments showed the superior performance of the pixel-level
test data selection for transductive learning. To further improve the segmentation
performance, an ensemble strategy was combined with the transductive learning,
in which multiple individual segmentation models are trained with transductive
learning and then combined together to segment test images. Experiments with
various deep learning models showed that the transductive learning with the
ensemble strategy always performs better than corresponding baseline models
in skin lesion segmentation.

2 Transductive skin lesion segmentation

The objective of the study is to alleviate the influence of subject-level difference
between training and test set, such that the trained segmentation model can
have better generalization ability. Instead of focusing on exploring information
from training set or other seemingly irrelevant large dataset, here we focus on
directly exploring information from the test set during model training, inspired
by the transductive learning strategy.

Fig. 1. The framework for transductive skin lesion segmentation. The line with double
arrows indicates that the two segmentation models pointed by the arrows are identical.

2.1 Transductive learning

To use transductive learning strategy, an initial segmentation model based only
on the training images need to be trained (Figure 1, upper left) and then used
to predict the initial segmentation result for each test image (Figure 1, lower
left). The initial predictions would be used as ground-truth annotations for the
test images, and finally such ‘annotated’ test images are used together with the
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Fig. 2. Example of generating annotation of a test image for transductive learning.
(a) a test skin image. (b) the probability output of the initial segmentation model
for the test image, with brighter pixels indicating higher probability of belonging to
lesion. (c) an example of random selection of pixels for transductive learning. Pixels
within randomly generated purple regions are discarded and the other pixels are se-
lected. Each selected pixel was assigned to either ‘lesion’ (yellow) or ’healthy’ (black)
class label by thresholding the probability output with 0.5. (d) High-confidence pixel
selection for transductive learning. A pixel was considered high-confidence when the
probability output is either close to 1.0 (highly likely being lesion) or to 0.0 (likely
being healthy), therefore the pixels whose output probability is around 0.5 (purple
regions) are discarded and all the other pixels are selected for tranductive learning.

training set to train a new segmentation model (Figure 1, right half), finish-
ing the process of transductive learning. Considering the initial segmentation
of test images are often noisy, for each test image, only the pixels with high-
confidence predictions were selected for model training, where the confidence for
each pixel can be directly obtained from the prediction (probability) output from
the initial segmentation model. As supported by experiments (Section 3.2), such
confidence-based pixel selection strategy is more effective than other candidate
selections, including selecting pixels randomly from each test image or using all
pixels from a subset of test images. This is also consistent with the strategy of
selecting high-confidence test images for transductive image classification [10].

2.2 Ensemble transductive learning

To further improve the generalization of segmentation, we propose combining
the ensemble strategy with the transductive learning, i.e., multiple segmenta-
tion models were respectively trained by transductive learning and then com-
bined together when predicting the segmentation result for any new image. The
variations between these models can be obtained by either training from dif-
ferential initialized model parameters or by randomly selecting a subset of test
images for tranductive learning. To make full use of test images, the former op-
tion was selected here, i.e., using high-confidence pixels of all test images, but
training models from different initialized parameters.



Ensemble Transductive Learning for Skin Lesion Segmentation 5

3 Experimental evaluations

3.1 Experimental setup

The proposed transductive segmentation approach was evaluated on ISIC dataset
which was released for the MICCAI’2018 grand challenge “ISIC task1: Lesion
Boundary Segmentation” [5]. The training set consists of 2594 dermoscopic im-
ages and corresponding ground-truth annotations for lesion regions. The vali-
dation set and test set contain 100 images and 1000 images respectively, with
ground-truth annotations kept by the organizer. The predicted segmentation re-
sult by any model was submitted online to obtain the prediction result via the
live leaderboard.

During training of a segmentation model, unless mentioned otherwise, SGD
optimizer was used with initial learning rate 0.007 and the momentum value
0.9. Learning rate was updated with a poly scheduler. For the evaluation metric,
besides the general measurements (accuracy, dice score, Jaccard index or inter-
section over union, sensitivity, specificity), the organizer particularly chose the
Threshold Jaccard Index (TJI) as the essential metric. In this metric, Jaccard
index for the predicted segmentation of any test image was set to zero when
the index is lower than a pre-defined threshold (0.65 here), while the index was
kept unchanged when it is higher than the threshold. TJI was calculated by
averaging the thresholded index values over all test images. TJI can more ac-
curately reflect the number of images in which automated segmentation fails or
falls outside expert inter-observer variability. Note that the number of images in
which automated segmentation fails is a direct measure of the amount of labor
required to correct an algorithm.

In all the subsequent experimental results, if there is no special explanation,
we use the same settings to train three identical models at the same time, and
then simply use voting strategy and average strategy for ensemble learning. The
three models differ only in the random process of parameter initialization and
the randomness of the selected samples during the training process. The purpose
of the integration is to make the experimental results more reliable and stable.

3.2 Effectiveness of transductive segmentation

To evaluate the effectiveness of transductive segmentation, we first compared the
proposed ensemble transductive model with several alternative strategies. One
baseline is the traditional ensemble of three segmentation models without using
transductive learning (‘No transductive’ in Table 1). Another strategy is the en-
semble of three transductive segmentaion models, with each model trained with
all pixels of randomly selected 80% test images (‘Random test images’ in Ta-
ble 1). The third strategy is the ensemble of three transductive segmentaion mod-
els, with each model trained with all pixels of all test images (‘All test images’
in Table 1), the fourth strategy is the ensemble of three transductive segmen-
taion models, with each model trained with randomly selected 80% pixels from
each test images (‘Random pixels’ in Table 1). The last row (‘High-confidence
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pixels’ in Table 1) shows the segmentation performance of the proposed semble
of three transductive segmentaion models, with each model trained with high-
confidence pixels from each test images. High-confidence pixels were selected by
discarding those pixels whose prediction probability values is within the range
[0.25, 0.75]. Table 1 clearly shows that the proposed ensemble transductive seg-
mentation model outperforms all the other strategies, with 3.5% improvement
in TJI compared to the traditional ensemble model (78.1% vs. 74.6%), and more
than 1% improvement compared to the ensemble transductive model based on
all test images (78.1% vs. 76.8%). Another observation is that the all the ensem-
ble transductive segmentations (the last four rows in Table 1) outperform the
ensmble model without using transductive learning, supporting that transduc-
tive learning is effective in improving the segmentation of skin lesions, no matter
which strategy was used to select pixels or images from the test set.

Table 1. Comparison of transductive segmentations with different strategies. DeepLab
v3+ was used as the backbone segmentation model.

Transductive strategy accuracy dice jaccard sensitivity specificity TJI

No transductive 0.935 0.883 0.808 0.95 0.928 0.746
Random test images 0.934 0.887 0.816 0.935 0.936 0.756
All test images 0.933 0.888 0.82 0.921 0.938 0.768
Random pixels 0.933 0.889 0.82 0.929 0.933 0.765
High-confidence pixels 0.941 0.896 0.83 0.919 0.957 0.781

3.3 Robustness of transductive segmentation over model structures

To evaluate the robustness of the ensemble transductive segmentation, we com-
pared its performance with the ‘No transductive’ ensemble model and the en-
semble tranductive segmentation with ‘All test images’ under three different
segmentation model structures, the well-known U-Net, the DeepLab V3+, and
the recently proposed Dual Attention Network(DAN) [7]. Table 2 shows that,
while different backbone segmentation models performed differently, all the three
models with the proposed high-confidence pixel transductive learning (last row)
performed better than the two strong baselines (first and second rows) in skin
lesion segmentation. This confirms that the transductive segmentation is inde-
pendent of segmentation model structures.

3.4 Effectiveness of single transductive segmentation

So far, the evaluation was based on ensemble of multiple single segmentation
models. To show that the proposed transductive segmentation approach works
not just on ensemble models, here we compared single transductive segmenta-
tion model (‘High-confidence’ in Figure 3) with the baseline single segmentation
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Table 2. Performance of ensemble transductive learning with different segmentation
model structures. Threshold Jaccard Index (TJI) was used as the metric.

Method UNet DAN DeepLab

No transductive 0.702 0.756 0.746
All test images 0.728 0.762 0.768
High-confidence pixels 0.730 0.779 0.781

without using transductive learning (‘Baseline’ in Figure 3). In each case, three
single models were trained and averaged. Consistent with the previous results
with ensemble models, transductive segmentation works better than the one
without transductive learning on single models as well, no matter which model
structure is used.

Fig. 3. Comparison between single transductive segmentation and the traditional seg-
mentation without transductive learning on three different model structures.

3.5 Influence of hyper-parameters

One key hyper-parameter in the proposed approach is the threshold value to se-
lect high-confidence pixels. All the reported performance above was based on the
threshold 0.75, i.e., selecting pixels in each test image whose prediction proba-
bility is either larger than 0.75 (likely ‘lesion’) or less than 0.25 (likely ‘healthy’).
Here we evaluated the performance of the proposed transductive segmentation
with different threshold values 0.65 (i.e., selecting pixels whose prediction prob-
ability is either larger than 0.65 or less than 0.35), 0.75, 0.85, and 0.90 (i.e.,
selecting pixels whose prediction probability is either larger than 0.90 or less
than 0.10). Figure 4 demonstrates the selected pixels at different thresholds,
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with higher threshold leading to fewer selected pixels, and lower threshold lead-
ing to more selected pixels. It is not surprising that higher (e.g., 0.85 or 0.90) or
lower threshold value (0.65) would cause relatively worse performance compared
to the threshold 0.75 (Table 3), because higher threshold values would make
the transductive learning discard too many pixels from test images and there-
fore cannot extract enough information from test images, while lower threshold
value would make the transductive learning select too many pixels from test im-
ages which would increase the likelihood of incorrect prediction labels for model
training.

Fig. 4. High-confidence pixel selection from each test image with a different thresh-
old. (a) a test image, (b-e) selected pixels (black and yellow) when threshold is 0.65,
0.75, 0.85, and 0.90 respectively. Yellow regions correspond to high-confidence lesions
and black regions correspond to high-confidence healthy regions, while purple regions
correspond to excluded pixels.

Table 3. The performance of transductive segmentation with different threshold to
select high-confidence pixels from each test image.

Threshold accuracy dice jaccard sensitivity specificity TJI

0.65 0.935 0.889 0.818 0.943 0.933 0.767
0.75 0.941 0.896 0.83 0.919 0.957 0.781
0.85 0.937 0.89 0.819 0.936 0.945 0.767
0.90 0.937 0.887 0.813 0.942 0.943 0.757

One may doubt that the reported comparison results above is based on the
optimal selection of the hyperparameter for the proposed model, but not for
the baseline models. Here we also performed experiments by varying relevant
hyperparameters within the baseline models. Specifically, we varied the per-
cent of test images under the ’Random test images’ condition (see Table 1 and
Section 3.2) for transductive learning, and also varied the percent of randomly
selected pixels under the ‘Random pixels’. Table 4 showed that even with the
optimal hyperparameters, the transductive segmentations under these two con-
ditions were outperformed by the the proposed transductive segmentation with
high-confidence pixel selection.



Ensemble Transductive Learning for Skin Lesion Segmentation 9

Table 4. The performance of transductive models with varying relevant hyperparam-
eters for alternative pixel/image selection. Note that the ‘Random test images’ with
100% image selection is equivalent to the ‘Random pixels’ with 100% pixel selection.

Method accuracy dice jaccard sensitivity specificity TJI

Random test images (60%) 0.934 0.887 0.815 0.939 0.936 0.759
Random test images (80%) 0.934 0.887 0.816 0.935 0.936 0.756
Random test images (100%) 0.933 0.888 0.82 0.921 0.938 0.768

Random pixels (60%) 0.933 0.888 0.819 0.923 0.934 0.767
Random pixels (80%) 0.933 0.889 0.82 0.929 0.933 0.765
Random pixels (100%) 0.933 0.888 0.82 0.921 0.938 0.768

High-confidence pixels (0.75) 0.941 0.896 0.83 0.919 0.957 0.781

4 Conclusion

This paper proposed an ensemble transductive learning strategy for automati-
cally segmenting lesion regions from skin images. By learning directly from both
training and test set, the proposed approach can effectively reduce the subject-
level difference between training and test set, thus improving the generalization
performance of segmentation models. The superior performance of transductive
segmentation has been consistently confirmed with varying model structures and
strategies to select pixels from test images. Considering that the number of an-
notated training images are often very limited in medical image segmentation
tasks, the transductive segmentation approach may provides an alternative ef-
fective way to improve the performance of any segmenatation model, besides the
widely adopted transfer learning and ensemble modeling.
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