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a b s t r a c t 

Continually learning to segment more and more types of image regions is a desired capability for many 

intelligent systems. However, such continual semantic segmentation exhibits catastrophic forgetting is- 

sues similar to those of continual classification learning. Unlike the existing knowledge distillation strate- 

gies for alleviating this problem, transferring a new type of information, namely, the relationships be- 

tween elements (e.g., pixels) within each image that can capture both within-class and between-class 

knowledge, is proposed in this study. Such information can be effectively obtained from self-attention 

maps in a Transformer-style segmentation model. Considering that pixels belonging to the same class 

in each image typically share similar visual properties, a class-specific region pooling operator is novelly 

applied to provide reliable relationship information for knowledge transfer. Extensive evaluations on mul- 

tiple public benchmarks reveal that the proposed self-attention transfer method can effectively alleviate 

the catastrophic forgetting issue. Furthermore, flexible combinations of the proposed method with widely 

adopted strategies considerably outperform state-of-the-art solutions. 

© 2023 Elsevier Ltd. All rights reserved. 

1

l

d

i

4

o

l

m

c

t

t

f

f

a

l

d

o

a

m

i

l

t

e

m

b

i

t

s

l

s

c

c

h

0

. Introduction 

Continually learning knowledge is a desired capability for intel- 

igent systems in many application scenarios, such as autonomous 

riving, autonomous stores, and intelligent healthcare. Most stud- 

es on continual learning have focused on classification tasks [1–

] in which the classifier is continually updated to learn to rec- 

gnize more and more classes over multiple stages of continual 

earning. In addition to continual classification tasks, continual se- 

antic segmentation of images have been investigated [5–8] to 

ontinually update a segmentation model such that it can learn 

o segment more and more types of image region. Similar to con- 

inual classification, continual semantic segmentation also suffers 

rom the catastrophic forgetting issue [9] , that is, the model rapidly 

orgets the knowledge obtained from previously learned old classes 

fter learning to segment more classes of image regions, particu- 

arly over multiple stages of continual learning. 
∗ Corresponding author. 

E-mail address: wangruix5@mail.sysu.edu.cn (R. Wang) . 
1 The addresses of Yiqiao Qiu, Yixing Shen and Yanchong Zheng are current ad- 

ress. 
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To alleviate the catastrophic forgetting issue, several strategies 

riginally used for continual classification tasks have been directly 

dopted and empirically proved to be effective for continual se- 

antic segmentation. One strategy is knowledge distillation, which 

s used to transfer old knowledge by distilling the output of the 

ast layer or multiple layers from the previously updated old model 

o the current model [7,10] . Another strategy is the use of stored 

xemplars for each previously learned class when training the new 

odel, allowing the new model to directly refresh old knowledge 

ased on these limited old data. In addition to directly borrow- 

ng ideas from continual classification tasks, researchers have iden- 

ified a specific background-shifting issue in continual semantic 

egmentation tasks, that is, background regions in images at one 

earning stage may contain regions of classes learned at another 

tage, thus confusing the model when discriminating foreground 

lasses against the background class. Several effective remedies, in- 

luding pseudo-labeling of the background regions in new training 

mages based on the previously learned old model [7,11,12] and 

xcluding salient regions from the background as the unknown 

future) class during model learning [12] , have been proposed to 

itigate this problem. 

In this study, we propose a simple and novel knowledge 

istillation strategy called Self-Attention Transfer for effective 

https://doi.org/10.1016/j.patcog.2023.109383
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109383&domain=pdf
mailto:wangruix5@mail.sysu.edu.cn
https://doi.org/10.1016/j.patcog.2023.109383
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ontinual semantic Segmentation (SATS). Unlike existing knowl- 

dge distillation methods in which the model output or visual 

eatures are distilled from single or multiple convolutional lay- 

rs, the proposed SATS distills the visual relationships between 

lements (e.g., pixels) within each image to capture both within- 

lass and between-class knowledge. Such relational knowledge is 

btained from self-attention maps in a transformer-style segmen- 

ation model, and it has never been used for continual semantic 

egmentation in previous studies. Furthermore, class-specific re- 

ion pooling (CRP) is novelly applied to efficiently elucidate the 

isual relationship for both within-class and between-class knowl- 

dge. To the best of our knowledge, this is the first study which 

pplies self-attention and class-region pooling to continual learn- 

ng. The proposed SATS can be combined with widely adopted con- 

inual learning strategies and has achieved state-of-the-art con- 

inual segmentation performance on the VOC [13] and ADE [14] 

emantic segmentation benchmark datasets. The contributions of 

his study are as follows: 

• A novel knowledge distillation method is proposed for contin- 

ual semantic segmentation. The proposed distillation of rela- 

tional knowledge is complementary to existing distillation of 

visual knowledge. 
• CRP is applied to continual semantic segmentation. In partic- 

ular, CRP is used to extract within-class and between-class 

knowledge for distillation during continual learning. 
• This is the first study in which Transformer is innovatively ap- 

plied in continual semantic segmentation. 
• Extensive evaluations on multiple benchmarks and settings re- 

veal that the proposed SATS method can effectively alleviate the 

catastrophic forgetting issue, and its flexible combinations with 

widely adopted strategies outperform state-of-the-art methods. 

. Related work 

.1. Semantic image segmentation 

Semantic image segmentation task aims to automatically di- 

ide an image into multiple local regions such that each local re- 

ion corresponds to an object, part of the object, or part of the 

ackground. As for other tasks, such as image classification and 

bject detection, the state-of-the-art segmentation performance 

s based on the supervised training of a certain deep learning 

odel with a set of labeled training data. Most deep-learning mod- 

ls for semantic segmentation have an encoder-decoder architec- 

ure, in which the encoder is responsible for extracting features 

rom the input image and the decoder is used to predict the se- 

antic label of each image pixel. While fully convolutional net- 

orks were previously dominant for both the encoder and de- 

oder, as the segmentation models: FCN [15] , UNet [16] , and the 

eepLab series [17–20] . These CNN-based segmentation models 

ave been outperformed by the transformer-style segmentation 

odels such as SETR [21] , SegFormer [22] , and MaskFormer [23] . 

uch transformer-based segmentation models can learn to extract 

eatures for each local region by considering visual proximity be- 

ween every pair of local regions using the self-attention operator 

t multiple scales in the models. 

Besides investigating advanced model backbones for supervised 

emantic image segmentation, studies have focused on challeng- 

ng conditions, including semi-supervised, weakly supervised, in- 

eractive, and domain-adaptive semantic segmentation. In semi- 

upervised semantic segmentation, only a small portion of the 

raining dataset is assumed to be labeled. In this case, the pseudo- 

abeling strategy and consistency regularization are typically ap- 

lied to unlabeled training data to train a better segmentation 

odel [24–26] . Unlike semi-supervised segmentation, in weakly 
2

upervised segmentation, each training image is weakly super- 

ised, either in the form of points [27,28] , scribbles [29,30] , or 

ounding box [31–33] , or image-level labels [34–36] . Depending 

n the specific form of weak annotations, various strategies, such 

s the use of a class activation map (CAM) [34,36] , have been pro-

osed to estimate more precise regions for objects of interest in 

he training images [35,37,38] , and conventional supervised learn- 

ng is applied based on updated and precise annotations. As an 

xtension of the weakly supervised segmentation task, interactive 

mage segmentation allows humans to interactively provide feed- 

ack to iteratively refine the initial segmentation result [39–41] . 

uch interactive segmentation is an efficient strategy for obtaining 

ccurate segmentation results from the model at the inference (i.e., 

esting) phase and may be practical in real scenarios. Another prac- 

ical but challenging problem is domain-adaptive semantic seg- 

entation, in which the data domain may be shifted more or less 

hen applying a trained segmentation model to a real-world sce- 

ario. In this case, a set of new unlabeled data from the new (tar- 

et) domains are typically collected to fine-tune the pretrained 

egmentation model either using the training set from the old 

source) domain [42,43] or not [44,45] . Pseudolabels are typically 

stimated for all or part of the unlabeled data, which are then used 

or model fine-tuning [44] , as in the semi-supervised segmenta- 

ion. Active learning can be applied by estimating a small por- 

ion of unlabeled data for humans to annotate [46] , and human- 

nnotated data (together with pseudo-labeled data) are then used 

o fine-tune the model. Even without any human annotations or 

seudolabels, the model can be fine-tuned during testing, for ex- 

mple, by modifying the batch normalization parameters in each 

odel layer with statistics for the test data [45] . Techniques for 

hese challenging segmentation tasks have been proposed (e.g., 

seudo-labeling) or could potentially (e.g., active learning) be ap- 

lied to continual semantic segmentation. 

.2. Continual learning and continual semantic segmentation 

Most continual learning studies have focused on classifica- 

ion tasks [1–4,47] , whereas limited studies have focused on con- 

inual semantic segmentation using deep learning models [5–

,12] . Generally, there exist two types of continual learning 

asks, task-incremental and class-incremental. Compared to task- 

ncremental learning which often assumes task identification and 

he corresponding model head is available during inference, class- 

ncremental learning is more challenging because the model needs 

o be continually updated to predict all learned classes using a sin- 

le model head. This study focused on the class incremental se- 

antic segmentation problem. 

Numerous approaches developed originally for continual clas- 

ification may be adapted for continual semantic segmentation. A 

idely used approach of continual classification is knowledge dis- 

illation [1,2,47,48] . In this method, the knowledge of previously 

earned old classes can be demonstrated by the response of the 

ld model to the input data. Therefore, expecting that the new 

odel has a similar response to the same input would gain or 

aintain a similar old knowledge of the old model. The similar- 

ty between the response of the new model and that of the old 

odel can be measured using the cross-entropy loss if the re- 

ponse is the model output, as in the LwF [1] and iCarL meth- 

ds [2] , or generally, by the Euclidean distance or cosine distance 

hen the response is the output of single or multiple interme- 

iate layers, as in the LwM [4] and PODNet methods [49] . Such 

nowledge distillation has been effectively applied to continual se- 

antic segmentation, for example, by distilling intermediate fea- 

ures [5] , model output [6] or spatially pooled outputs at each in- 

ermediate layer [7,10] . In addition to knowledge distillation, the 

eplay strategy has been proven helpful for continual classifica- 
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Fig. 1. Performance of the proposed SATS (Self-Attention Transfer for continual se- 

mantic Segmentation) method and current state-of-the-art methods in continual se- 

mantic segmentation. Each model with the same backbone initially learns to seg- 

ment 10 classes of regions and then continually learns to segment one more class 

at each new stage of continual learning. 
ion [2,50,51] and continual semantic segmentation [12] . A small 

mount of old data is stored for each previously learned class, and 

he old data are combined with new classes of training data when 

pdating the model at each subsequent learning stage. Although 

he stored old data are limited compared with new classes of train- 

ng data at each learning stage, applying them directly to model 

pdate and knowledge distillation can substantially alleviate the 

atastrophic forgetting of old knowledge [52–54] . Because of the 

rucial influence of old data, synthetic old data have been gener- 

ted for continual classification when original data cannot be pre- 

erved because of privacy or security concerns [55] ; this has been 

hown to be helpful for continual semantic segmentation [56] . 

Since the changing of existing model parameters during con- 

inual learning is the primary reason of forgetting old knowledge, 

esearchers have attempted to keep model parameters relevant 

o old knowledge from changing during learning new classes of 

nowledge [57,58] . An example is to fix and combine the major 

arts (feature extractor) of each old model into the new model 

tructure, and thus expecting to retain all previously learned old 

nowledge [59] . Although such a model-growing method achieved 

tate-of-the-art performance on continual classification, maintain- 

ng a balance between model scale and model performance over 

everal stages of continual learning remains challenging [60] . In 

ontinual semantic segmentation, while state-of-the-art perfor- 

ance was achieved when keeping the segmentation model fixed 

xcept for the last layer [12] , the model is too rigid to learn new

lasses, and its performance degrades rapidly over more stages. In 

omparison, our method allows updating of all model parameters 

or new knowledge learning and provides an (additional) effective 

ethod to transfer old knowledge from the old to the new model. 

In addition to alleviating the catastrophic forgetting issue, con- 

inual semantic segmentation has to solve the background-shifting 

ssue [6,7,12] , that is, the background regions in images at one 

earning stage may contain the regions of the classes learned at an- 

ther stage. At each new learning stage, part of background regions 

n the new training images can be pseudo-labeled as learned old 

lasses using the old model. Such pseudo-labeling is often helpful 

or alleviating this issue [7,10,12] . Besides pseudo-labeling, special 

onsideration of the background class during knowledge distilla- 

ion from the old model to the new model can help alleviate the 

ackground shift issue as well. Specifically, since the old model can 

redict each image pixel as one of old classes or the background 

lass whereas the new model can additionally predict each image 

s one of the newly learned classes, the probability of each image 

ixel belonging to each new classes or the background class pre- 

icted by the new model should be aggregated (i.e., summed) and 

uch aggregated probability is then compared to the probability of 

he pixel belonging to the background class predicted by the old 

odel during knowledge distillation [6] . In addition, the detection 

f salient regions from image background and considering them as 

ossible future classes (as a separate ’unknown’ class at the cur- 

ent stage) may reduce background shifting in the future stages of 

ontinual learning [12] . Strategies to alleviate background-shifting 

ssues can be used with those for alleviating catastrophic forget- 

ing in practice. In this study, the proposed method can also be 

exibly combined with existing strategies for continual semantic 

egmentation. 

To date, most continual semantic segmentation models have 

een based on fully convolutional network (FCN) backbone. Besides 

CN, the powerful transformer backbone, based on self-attention 

etween elements within each image, has started to exhibit poten- 

ial ability in solving various computer vision tasks [61–63] and 

ransformer-style segmentation models, such as SegFormer [22] , 

ave already shown superior performance than FCN models for 

emantic segmentation [19,20] . This study is the first to evaluate 

he performance of the Transformer backbone on continual seman- 
3 
ic segmentation and use of the unique self-attention information 

n the transformer to alleviate the catastrophic forgetting issue in 

ontinual semantic segmentation. 

. Method 

The objective of class-incremental semantic segmentation is to 

ontinually update a segmentation model that can learn to seg- 

ent more classes of image regions. In each learning stage, a set 

f training images that correspond to a specific number of new 

lasses, sometimes together with a small subset of the stored old 

ata for previously learned old classes are used to update the 

odel. Because few or even no old data of previously learned 

lasses are available, the primary challenge of continual seman- 

ic segmentation is alleviating the rapid forgetting of old class 

nowledge by the updated segmentation model, particularly over 

ultiple stages of continual learning. In this study, by using self- 

ttention information from the recently proposed segmentation 

ackbone, a simple yet effective knowledge distillation strategy is 

roposed to substantially alleviate the catastrophic forgetting issue 

 Fig. 2 ). 

.1. Self-attention transfer 

The recently proposed transformer model SegFormer 

22] achieved state-of-the-art performance on multiple image 

emantic segmentation tasks [13,14] . SegFormer and previous 

CN-based segmentation models [16,18–20] is the self-attention 

odule at each encoder layer in SegFormer. With self-attention 

etween each element and every other element (corresponding 

o a single pixel or a small local region) in the input image 

r feature maps from each SegFormer layer, and the difference 

etween further-apart local regions can be easily learned and 

lobally to help discriminate different classes of pixels or regions. 

n particular, the elements belonging to the same class will have 

igher self-attention scores than those from different classes. This 

esult leads to a similar attention-weighted feature vector for 

he elements that belong to the same classes in the feature map 

utput of the layer. Therefore, self-attention should contain certain 

ssential information from both within-class and between-class 

nformation. 
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Fig. 2. Framework of the proposed self-attention transfer method for continual semantic segmentation. Self-attention maps are obtained from the last multi-head self- 

attention layer in each transformer encoder block, and CRP (also see Fig. 3 ) is applied to generate a self-attention vector for each foreground class appearing in the input 

image. The self-attention vectors are then used for within- and between-class knowledge distillation. 

Fig. 3. Class-specific region pooling. 
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Based on these observations, we hypothesize that transferring 

elf-attention information from the old segmentation model to the 

ew model during continual learning may help new model better 

eep old knowledge. This technique differs from the output fea- 

ure maps of each layer that represent visual feature information 

or each input element, self-attention score vectors (from multiple 

elf-attention heads at the layer) for each element contain various 

elationships between the element and every other element. Thus, 

elf-attention scores within each layer may contain complementary 

nformation compared with the feature output of each layer, and 

istilling such information from the old model to the new model 

ay help the new model remember the knowledge within each 

ld class and across old classes. 

Considering that distilling each self-attention score vector at 

ach SegFormer encoder layer could prevent the new model from 

eing flexibly updated to learn new classes of knowledge, we 

ropose applying a class-specific region pooling (CRP) strategy to 

mprove model plasticity during continual learning ( Fig. 3 ). Intu- 
4 
tively, given any specific input image, elements belonging to the 

ame class will have similar self-attention vectors at each atten- 

ion layer. Therefore, pooling self-attention vectors over all ele- 

ents of the same class results in a single self-attention vec- 

or, which is representative of all the elements belonging to the 

ame class. Such pooled self-attention information may even be 

ore robust to small variations or noise in the individual elements. 

urthermore, because the feature map output from the last layer of 

ach encoder block is passed to the decoder, the self-attention in- 

ormation from the last self-attention layer in each encoder block 

ontains more information that is useful for segmentation. There- 

ore, only self-attention information from the last attention layer 

n each encoder block is considered for distillation ( Fig. 2 ), which 

voids layer-wise distillation and improves model plasticity during 

ontinual learning. 

Formally, we denote x i the i -th training image, A i, j,h the three- 

imensional self-attention map for the h -th attention head at the 

ast attention layer in the j-th encoder block, R i, j,c the set of 
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lement locations belonging to the c-th class in the layer. Subse- 

uently, the pooled self-attention feature vector for each class from 

ach attention head in each encoder block can be obtained by the 

ollowing equation: 

 i, j,c,h = 

1 

|R i, j,c | 
∑ 

(u, v ) ∈R i, j,c 

A i, j,h (u, v ) (1) 

here (u, v ) represents the location of elements belonging to class 

. For any specific image, only those classes appearing in the im- 

ge are considered for the pooling. Additionally, the background 

egion in an image may contain various visual information that is 

ifficult to be represented by one type of high-level knowledge. 

herefore, the background region is excluded from the pooling pro- 

edure. Here, f t−1 
i,c,h 

and f t 
i,c,h 

denote the concatenated pooled self- 

ttention vectors over all the encoder blocks from the SegFormer 

t the previous (t − 1) -th learning stage and the new SegFormer 

t the current t-th stage, respectively, and C i the set of classes (ex- 

luding the background class) appearing in image x i . Next, the dis- 

illation of the self-attention information can be achieved by min- 

mizing the loss L a ( θ) as follows, 

 a ( θ) = 

1 

N · H 

N ∑ 

i =1 

{ 

1 

|C i | 
∑ 

c∈C i 

H ∑ 

h =1 

|| f t i,c,h − f t−1 
i,c,h 

|| 2 
} 

(2) 

here θ is the new model parameters at the t-th stage, and N and 

represent the number of training images available at the t-th 

tage and the number of attention heads at the last attention layer 

n the last encoder block, respectively. 

This study is the first to apply a class-region pooling (CRP) 

trategy to continual semantic segmentation. Unlike existing region 

ooling [64–66] , which operate on the feature map output of the 

ast convolutional layer (representing the class center in the fea- 

ure space), our CRP operates on self-attention maps (representing 

elational knowledge within and between classes) of each block 

f the transformer-style segmentation model. Another difference 

s in the role of pooling. The region pooling in related work [64–

6] is typically part of the segmentation model, and the output of 

he pooling is used to train a better model under a conventional 

egmentation setting (that is, training a segmentation model for 

ll classes in a single learning stage). By contrast, pooling in our 

ethod is used to distill previously learned knowledge during con- 

inual learning. 

Furthermore, knowledge distillation in our SATS method dif- 

ers from existing knowledge distillation for continual learning. 

ur SATS distills within-class and between-class relational knowl- 

dge from self-attention maps during continual semantic segmen- 

ation, while existing distillation strategies distill non-relational 

isual knowledge from the outputs of one or more model lay- 

rs. Therefore, our method is complementary to existing knowl- 

dge distillation methods and can be used to further distill old 

nowledge during continual learning. Furthermore, knowledge dis- 

illation from our SATS is class-specific region-based, whereas 

xisting knowledge distillation is based on the pooling of whole 

eature maps (as in ILT [5] and MiB [6] ) or pooling along various

patial dimensions (as in PLOP [7] ). In other words, our method 

ries to respectively distill each class of knowledge from each im- 

ge, while existing methods distill globally averaged visual infor- 

ation in each image. Considering that multiple categories re- 

ions appear in each image, globally averaged visual features are 

ess precise in representing multiple types of knowledge in the in- 

ut rather than the visual features pooled from each class-specific 

egion. 
5 
.2. Flexible combination of existing strategies 

The proposed SATS is an independent knowledge distillation 

trategy and can be easily combined with existing continual learn- 

ng strategies for semantic segmentation. Studies have revealed 

hat (i) pseudo-labeling of background regions in new classes of 

mages [7,11,12] , (ii) knowledge distillation from the output of the 

ld segmentation model [6,7] , and (iii) maintaining a small num- 

er of exemplar images for each old class [12] keeps model per- 

ormance in continual learning. Thus, these three strategies were 

dopted as optional components of continual learning. 

In the pseudo-labeling strategy, the old model from the pre- 

ious learning stage is used to annotate the possible regions of 

he old classes in the background areas of the new image classes. 

t each learning stage, only regions of new classes were anno- 

ated in the new training images. Therefore, the background re- 

ions in the new images may contain regions of previously learned 

ld classes. Annotating and collecting such regions of old classes 

ould increase the amount of training data for old classes and 

enefit the training of the new segmentation model. If the pseu- 

olabels are not available here, the new model will be confused 

o segment the old classes as background. Following the pseudo- 

abeling strategy in the PLOP method [7] , only the background 

egions with confident predictions as old classes were pseudo- 

abeled. 

For the output distillation strategy, special considerations were 

ade for the background class [6] . Because the image regions of 

ew classes are typically learned as part of background regions 

y old models in previous learning stages, for each training image 

t the new learning stage, the MiB method [6] adds the predic- 

ion probabilities of the background class and all the new classes 

rom the new model as the modified unbiased prediction of the 

ackground class, and such modified prediction is compared to the 

utput of the old model for each input image during knowledge 

istillation. 

As in continual classification tasks, storing a small subset of im- 

ges for each old class can substantially improve the performance 

f the new segmentation model for old classes. In the state-of-the- 

rt SSUL method [6] , a memory buffer with a limited size is pro-

ided to store old data, and an equivalent number of images for 

ach old class were stored in memory. Some of the stored old data 

ay need to be discarded to store data for more recently learned 

lasses. 

It is worth noting these three strategies are supplementary to 

ach other and can be combined with the proposed method. In ex- 

sting state-of-the-art methods, two or more strategies are always 

ombined during continual segmentation learning. For example, in 

iB and PLOP, knowledge distillation and pseudo-labeling strate- 

ies are used, whereas in SSUL, knowledge distillation, pseudo- 

abeling, and example replay strategies are used. In this study, 

he pseudo-labeling strategy and knowledge distillation from the 

odel output are combined with the proposed method by default, 

nd the inclusion of the memory buffer to store small old data is 

ptional. Overall, the new segmentation model at each new learn- 

ng stage is updated by minimizing the combined loss function 

 ( θ) over all current new classes of training images at the new 

earning stage and the stored small old data for each old class as 

ollows: 

 ( θ) = L c ( θ) + λa L a ( θ) + λd L d ( θ) (3)

here L c ( θ) is the conventional cross-entropy loss, and L a ( θ) is the

elf-attention transfer loss ( Eq. 2 ) based on the CRP of the self- 

ttention maps from the old and the new models; here, L d ( θ) is

he unbiased knowledge distillation loss based on the outputs of 

oth the old and new models [6] , and λa and λd are hyperparam- 

ters to balance the loss terms. 
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. Experiments 

.1. Settings 

Dataset: Following existing work on continual semantic seg- 

entation, we used classical image segmentation benchmark 

atasets named Pascal VOC 2012 [13] and ADE20K [14] for both 

uantitative and qualitative evaluations. The VOC dataset includes 

0 foreground classes and one background class, with 10,582 im- 

ges for training, 1449 for validation, and 1449 for testing. The 

DE20K dataset includes 150 foreground classes and one back- 

round class, 20,200 images for training, 20 0 0 for validation, and 

0 0 0 for testing. 

Protocols: Following the “m-n” protocols used in previous stud- 

es, we used the first m foreground classes and the background 

lass in the dataset to train an initial segmentation model. The 

odel was then updated over the stages of continual learning 

y each continual learning method, with each stage learning new 

lasses. We used protocols VOC 15-1, 15-5, 5-3, and 10-1 and ADE 

00-10 and 25-25. The segmentation model was initially trained 

nd then updated in six stages (one initial stage plus five con- 

inual learning stages), two stages, six stages, and 11 stages for 

he four protocols on VOC and six stages on ADE. On the ADE20K 

ataset, the ADE 25-25 and 100-10 protocols were used because 

he 25-25 protocol is more challenging and practical in real ap- 

lications. Based on previous studies, we used the overlapped set- 

ing, that is, in each training and validation image at each stage 

f learning, only the image regions belonging to classes that are 

earned at the current stage are considered as foreground regions, 

nd other regions are considered as background, even if some of 

he regions belong to foreground classes that have been learned 

r will be learned in the future learning stages. Similarly, for test 

mages, only the foreground classes that have been learned at the 

urrent or previous stages are considered foreground regions, and 

ll other regions are considered background. 

Metrics: Standard mean Intersection-over-Union (mIoU) over 

lasses at each learning stage was used to evaluate the perfor- 

ance of each of these methods. For detailed investigation, the 

IoUs were calculated respectively over the first set of classes in 

he initial learning stage, and the other classes over subsequent 

ontinual learning. stages, and all the classes for each method with 

ach protocol. 

Implementation details: SegFormer-B2 [22] was used as the 

efault model, whose backbone encoder MixTransformer-B2 was 

retrained on ImageNet [67] following previous studies [5–8,12] on 

ontinual semantic segmentation, and the SegFormer decoder was 

andomly initialized. For the baseline methods using Deeplab V3, 

he model backbone is ResNet-101, according to previous stud- 

es [6,7] . Also following previous studies [6,7] , during model train- 

ng and updating of SegFormer-B2 or DeepLab V3, the SGD opti- 

izer with a batch size of 24 for VOC, 32 for ADE, and momentum 

f 0.9, was used with an initial learning rate of 0.01 for the first 

initial) learning stage, 0.001 for subsequent learning stages, and 

hen exponentially decreased with a decay rate of 0.9 over epochs. 

ach model was trained over 30 epochs and was selected from 

hose with the best performance on the validation set. The hyper- 

arameters λa and λd were empirically set to 20. For the experi- 

ents using memory to store old data, the memory size was set 

o 100 for VOC and 300 for ADE for all methods following the set- 

ing from SSUL [12] . All experiments were performed on PyTorch 

.8 with CUDA 10.2 using two NVIDIA V100 GPUs. 

.2. Quantitative evaluation 

Multiple continual learning settings (15-1, 15-5, 5-3, 10-1 on 

ascal VOC2012, and 100-10, 25-25 on ADE20K) were adopted to 
6 
ompare our SATS method with state-of-the-art methods for the 

wo datasets, VOC2012 and ADE20K, respectively. For the VOC2012 

ataset, among the prior methods for continual semantic segmen- 

ation with the DeepLab series (mainly DeepLab V3), SSUL per- 

ormed the best regardless of memory usage. However, the per- 

ormance of SSUL on continually learned classes (that is, except for 

he classes learned in the first learning stage) was outperformed by 

ther methods that used large amounts of auxiliary unlabeled data, 

uch as RECALL [56] , with the setting VOC 15-1 (classes 16–20, 

7.8% vs. 43.86%), and ST-CIL with VOC 15-5 (class 16–20, 54.3% vs. 

2.87%). This phenomenon is mainly because SSUL fixes the ma- 

ority of the models and only updates the segmentation head dur- 

ng continual learning. However, this limits its ability to learn new 

lasses. Compared with the reported results ( Table 1 , rows 2–10) 

f the strong baseline from their original work, where the DeepLab 

ackbone was used, the proposed SATS without using the memory 

f old data ( Table 1 , second last row, “SATS”) outperformed all ex- 

sting methods without using memory by a significant margin and 

ven outperformed the state-of-the-art method (SSUL-M 

∗), which 

sed stored small old data during continual learning, except for the 

OC 10-1 setting. 

Using the same SegFormer backbone for a fair comparison, our 

ATS method without memory (“SATS”) still outperformed the re- 

mplemented representative methods ILT, MiB, PLOP, and SSUL. 

 Table 1 , rows 12–15), except for the VOC 10-1 setting, in which 

he proposed method was slightly worse than SSUL for the average 

lassification of all classes (61.60% vs. 63.48%) but significantly bet- 

er than SSUL for the learned new classes (classes 11–20, 58.66% 

s. 51.85%) over the ten stages of continual learning. Again, this 

henomenon could be caused by SSUL’s fixing of the model param- 

ters for the first set of 11 classes (ten foreground classes plus one 

ackground class) and only adds channels at the last layer for new 

lasses. As a result, SSUL often exhibits superior performance on 

he initially learned old classes, but the model is too stable to learn 

ew classes, particularly in more stages of learning. Compared with 

he freezing strategy in SSUL, our proposed method allows flexible 

pdates of all model parameters and enables the updated segmen- 

ation model to easily learn new knowledge over continual learn- 

ng. 

This result is further confirmed by another series of experi- 

ents in which all the methods used stored small old data during 

ontinual learning ( Table 1 , rows 16–19 and the last row). With the 

elp of stored old data, both our method (’SATS-M’) and baselines 

iB-M and PLOP-M substantially boosted performance. However, 

he improvement in the SSUL method (’SSUL-M’) is limited, partic- 

larly for the settings VOC 15-5, 5-3, and 10-1. Because the SSUL 

xes model parameters for old classes, storing small amounts of 

ld data would play a limited role in keeping old knowledge from 

orgetting 

In comparison, our proposed method allows the model to be 

pdated flexibly for new class learning and simultaneously makes 

uperior use of stored old data to alleviate the forgetting of old 

nowledge. Consequently, our method (’SATS-M’) achieves state-of- 

he-art performance in all four VOC settings for continual seman- 

ic segmentation. This result is further confirmed in Figs. 1 and 

 , which reveal that the method outperformed the representative 

ethods at each stage of continual learning and the performance 

ap between existing methods and gradually increases with more 

tages of learning. 

Similar results were obtained for the ADE20K dataset (see 

able 2 ). For both settings, 100-10 and 25-25, notice that our 

ethod (last two rows) outperformed strong baselines on the new 

lasses (columns 2 and 5) and all classes (columns 3 and 6), re- 

ardless of whether memory buffer is used (rows 4–6 vs. row 8) 

rows 1–3 vs. row 7). These results support the generalizability of 

ur method to different continual semantic segmentation tasks. 



Y. Qiu, Y. Shen, Z. Sun et al. Pattern Recognition 138 (2023) 109383 

Table 1 

Semantic segmentation performance after finishing the last stage of continual learning. With each protocol, model performance on the set of classes learned at the first 

learning stage (e.g., class 0–15 with protocol VOC 15-1), on the other classes learned over stages of continual learning (e.g., class 16–20 with VOC 15-1), and on all the 

classes (All) were reported for each method. Methods with ∗ indicate the results were directly obtained from the corresponding original work, and all the other results 

were based on our re-implementations of these methods. Methods with “-M” denote that the memory of limited old data was used. In each column, the numbers in bold 

represent the highest performance, and the underlined numbers represent the second-highest performance. 

VOC 15-1 (6 Tasks) VOC 15-5 (2 Tasks) VOC 5-3 (6 Tasks) VOC 10-1 (11 Tasks) 

Method Network 0–15 16–20 All 0–15 16–20 All 0–5 6–20 All 0–10 11–20 All 

Joint Training DeepLab V3 79.77 72.35 77.43 79.77 72.35 77.43 76.91 77.63 77.43 78.41 76.35 77.43 

LwF-MC � [2] DeepLab V3 6.40 8.90 6.90 58.10 35.00 52.30 20.91 36.67 24.66 4.65 5.90 4.95 

ILT � [5] DeepLab V3 8.75 7.99 8.56 67.08 39.23 60.45 22.51 31.66 29.04 7.15 3.67 5.50 

MiB � [6] DeepLab V3 35.1 13.5 29.7 75.5 49.4 69.0 57.1 42.5 46.7 12.2 13.1 12.6 

PLOP � [7] DeepLab V3 66.25 24.86 56.4 75.49 49.66 69.34 17.48 19.16 18.68 44.03 15.51 30.45 

SDR � [8] DeepLab V3 + 44.7 21.8 39.2 75.4 52.6 69.9 N/A N/A N/A N/A N/A N/A 

RECALL � [56] DeepLab V2 65.7 47.8 62.7 66.6 50.9 64.0 N/A N/A N/A 59.5 46.7 54.8 

ST-CIL � [11] DeepLab V3 71.4 40.0 63.6 76.7 54.3 71.1 N/A N/A N/A N/A N/A N/A 

SSUL � [12] DeepLab V3 78.06 28.54 66.27 77.42 47.16 70.21 71.17 45.38 52.75 73.78 41.13 58.23 

SSUL-M 

� [12] DeepLab V3 78.92 43.86 70.58 79.53 52.87 73.19 72.91 49.02 55.85 74.79 48.87 62.45 

Joint Training SegFormer B2 80.84 74.97 79.44 80.84 74.97 79.44 78.36 79.87 79.44 80.46 78.32 79.44 

ILT [5] SegFormer B2 17.44 12.13 16.18 49.07 53.97 50.24 13.20 15.43 14.79 6.67 6.13 6.41 

MiB [6] SegFormer B2 73.21 37.93 64.81 78.78 60.93 74.53 61.12 58.02 58.56 48.7 39.58 44.36 

PLOP [7] SegFormer B2 64.59 37.23 58.08 72.51 48.37 66.76 35.65 32.71 33.54 48.53 33.71 41.47 

SSUL [12] SegFormer B2 79.91 40.56 70.54 79.91 56.83 74.41 74.33 60.79 64.66 74.06 51.85 63.48 

ILT-M SegFormer B2 15.15 11.01 14.16 49.85 53.49 50.72 12.91 15.43 14.71 6.75 6.07 6.42 

MiB-M SegFormer B2 73.89 58.39 70.72 79.91 63.56 75.20 70.11 65.17 66.58 69.73 56.28 63.33 

PLOP-M SegFormer B2 71.11 52.61 66.70 78.53 65.58 75.44 67.29 62.91 64.16 57.94 51.64 54.94 

SSUL-M SegFormer B2 79.84 49.33 72.58 79.84 55.82 74.12 76.04 61.95 65.98 74.23 52.24 63.76 

SATS (ours) SegFormer B2 78.38 62.02 74.48 80.24 61.17 75.70 75.43 64.13 67.36 64.27 58.66 61.60 

SATS-M (ours) SegFormer B2 80.37 64.54 76.61 81.44 70.02 78.72 75.58 69.67 71.36 76.21 61.62 69.27 

Fig. 4. Semantic segmentation performance at each stage of continual learning. Our SATS method always outperforms all existing methods after each stage of learning, with 

the protocol VOC 15-1 (left) and 5-3 (right). All methods used memory of the same size to store limited old data during continual learning. 

Table 2 

Performance comparison on ADE20k dataset. 

Method ADE 100-10 (6 Tasks) ADE 25-25 (6 Tasks) 

0–100 101–150 All 0–25 26–150 All 

MiB 40.30 17.27 32.67 54.04 23.6 28.84 

PLOP 39.16 15.08 31.19 57.44 12.76 20.41 

SSUL 42.51 16.03 33.74 59.43 13.87 21.88 

MiB-M 41.12 18.86 33.75 54.59 24.25 29.47 

PLOP-M 41.24 14.94 32.36 57.25 14.42 21.80 

SSUL-M 42.79 15.84 33.86 60.12 16.89 24.33 

SATS (ours) 41.42 19.09 34.18 57.12 26.23 31.56 

SATS-M (ours) 41.55 23.13 35.45 57.42 27.14 32.36 
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.3. Visualization analysis 

Besides the quantitative evaluation, qualitative evaluation was 

erformed with the VOC 15-1 protocol. A set of representative and 

hallenging test input images were selected. In these images, the 
7 
oreground classes in these images were learned in the first (ini- 

ial) stage of learning. The images were segmented after each seg- 

entation model completed all stages of continual learning. There- 

ore, if old knowledge is catastrophically forgotten over learning 

tages, the model would not effectively segment these images con- 

aining earlier learned old classes. 

Figure 5 reveals that all baselines except the ILT-M method can 

nd the foreground regions. However, all of these incorrectly seg- 

ented parts of the background regions (particularly those back- 

round regions close to the boundary of foreground objects) as 

oreground classes which even did not appear in the images. Our 

roposed method (second last column) can accurately discriminate 

he foreground regions against the background regions, regardless 

f whether the foreground object is large (first and last rows) 

r small (fourth row). Another observation is that the proposed 

ethod can find more accurate boundaries of foreground objects 

articularly when multiple foreground objects appear in the im- 

ges (first, third, and fourth rows, respectively). Superior discrim- 

nation between background and foreground classes and between 
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Fig. 5. Demonstration of segmentation results based on our SATS method and four representative baselines. 
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ifferent foreground classes of regions using our SATS method may 

artly originate from the self-attention transfer, which can capture 

etween-class relationships for knowledge distillation, whereas all 

xisting methods do not directly consider such relationships when 

istilling old knowledge. 

It’s worth noting that this study focuses on alleviating the 

atastrophic forgetting of old knowledge in continual semantic seg- 

entation rather than on the more accurate segmentation of chal- 

enging objects (e.g., very small objects). The missing ”person”

rom the segmentation result ( Fig. 5 , last row, sixth column) is 

robably because the adopted SegFormer backbone may not be 

ufficiently powerful for segmentation of very small objects in im- 

ges. The other methods with SegFormer ( Fig. 5 , columns 2–5) do 

ot accurately segment the very small region of ”person”. If a more 

owerful segmentation model can segment small objects, the pro- 

osed CRP would better extract the visual knowledge of small ob- 

ects (from the corresponding class-specific region) and then trans- 

er old knowledge to the new model during continual learning. 

herefore, a more accurate segmentation of small objects can be 

onsidered as one segmentation challenge, which is independent 

f the catastrophic forgetting issue in continual learning. 

.4. Ablation and sensitivity study 

The effect of each component of the proposed SATS method is 

onfirmed through an ablation study. In particular, when removing 

seudo-labeling ( Table 3 , left, first row), the self-attention trans- 
8

er loss L a (left, second row), unbiased knowledge distillation loss 

 d (left, third row), and model performance all decreased substan- 

ially (by 4%-5% in mIoU) for all three VOC settings (15-1, 5-3, 

0-1) compared with using all (the last row). This phenomenon 

uggests that self-attention transfer may be used as the default 

omponent in future studies to improve continual learning per- 

ormance, which is similar to the widely used knowledge distilla- 

ion based on the model output and the proposed pseudo-labeling 

trategy. 

In addition, the necessity of using multiple scales of self- 

ttention maps has been confirmed. As displayed in Table 3 (right), 

hen using self-attention information from only the last one, two, 

r three SegFormer blocks, the model performance degraded sub- 

tantially from a mIoU of 76.6% to 71.5%, 73.1%, and 75.28%. This re- 

ult is reasonable because SegFormer collects visual features from 

ll four scales of encoder blocks for accurate segmentation, indi- 

ating that the self-attention information from the four encoder 

locks may capture within- and between-class relationships at dif- 

erent visual scales, and such multiscale information would repre- 

ent more relational knowledge. 

Furthermore, a comparison with distillation using the encoder’s 

eature maps supports that the distillation of self-attention is more 

ffective ( Table 4 , row 1 vs. row 3), and the results of distilling

oth is slightly worse than our results ( Table 4 , row 2 vs. row 3).

urthermore, the ablation of CRP ( Table 4 , rows 4–5 vs. row 6) 

hows that simply pooling all pixels for self-attention distilla- 

ion (GP in Table 4 ) or trivially distilling all self-attention vectors 
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Table 3 

Ablation study of the proposed SATS. Left: effect of SATS components on continual learning with three VOC settings. Right: the necessity of using multiscale self-attention 

transfer. PL: pseudo-labeling. 

PL L a L d VOC 15-1 VOC 5-3 VOC 10-1 Blocks for SATS VOC 15-1 

0–15 16–20 all 0–5 6–20 all 0–10 11–20 all 0–15 16–20 all 

✗ � � 74.04 66.18 72.17 76.56 65.89 68.94 70.92 58.65 65.08 Last one block 78.54 48.96 71.50 

� ✗ � 76.88 58.84 72.58 75.43 62.51 66.2 74.77 52.86 64.33 Last two blocks 79.23 53.40 73.10 

� � ✗ 78.14 49.14 71.24 68.05 64.9 65.78 72.03 60.20 66.40 Last three blocks 79.47 61.83 75.28 

� � � 80.37 64.54 76.61 75.58 69.67 71.36 76.21 61.62 69.27 All blocks 80.37 64.54 76.61 

Table 4 

Ablation study of self-attention distillation, class-specific region pooling (CRP), and the model backbone. ”Feature”: encoder’s feature 

maps for distillation. GP: global pooling of self-attention over the whole image region. NP: no pooling. 

Setting VOC 15-1 (6 Tasks) VOC 10-1 (11 Tasks) 

0–15 16–20 All 0–10 11–20 all 

Distillation Feature 78.93 59.77 74.37 74.73 59.16 67.32 

Self-Attention + Feature 80.88 61.78 76.34 76.52 59.89 68.60 

Self-Attention (Ours) 80.37 64.54 76.61 76.21 61.62 69.27 

Pooling GP 80.32 61.67 75.88 74.38 60.81 67.92 

NP 80.07 61.54 75.66 73.51 58.92 66.57 

CRP (Ours) 80.37 64.54 76.61 76.21 61.62 69.27 

Backbone CRP with DeepLab V3 78.00 45.65 70.3 66.61 44.43 56.05 

CRP with Transformer (Ours) 80.37 64.54 76.61 76.21 61.62 69.27 

Fig. 6. Sensitivity study of hyper-parameters λa and λd with the continual learning setting VOC 15-1. When varying one hyper-parameter, the other one is fixed to 20. 
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ithout pooling (NP in Table 4 ) downgraded model performance. 

hese results support the necessity of distillation of self-attention 

nformation and the performance improvement from the region 

ooling operators. 

One additional ablation study was performed by replacing the 

ransformer backbone with the DeepLab V3 backbone while keep- 

ng the other components (including CRP on feature map to per- 

orm knowledge distillation) unchanged during continual semantic 

egmentation. Table 4 (row 7 vs. row 8) shows that the ablated 

ersion exhibits inferior performance to the original version, sup- 

orting the fact that the relational knowledge from self-attention 

aps in the transformer backbone is crucial during continual se- 

antic segmentation. 

Finally, the sensitivity of the hyperparameters λa and λd in the 

oss function is investigated. As Fig. 6 (left) shows that when λa 

aries from 5 to 40, the model performance fluctuates within a 

mall range. Similarly, varying λd within the range [10 , 30] results 

n stable model performance ( Fig. 6 , right). This sensitivity study 

eveals that our method is robust to the setting of each hyperpa- 

ameter within a large range of values. 
9 
.5. Limitations 

Although extensive evaluations confirmed the effectiveness of 

he proposed SATS method on continual semantic segmentation, 

his study has several limitations. First, all experiments were con- 

ucted according to previous studies, where the maximum num- 

er of total learning stages is low. It remains unclear how effective 

ur method and other existing strategies are in more (e.g. 20 or 

0) stages of continual learning. Second, the setting of the hyper- 

arameter λa for the self-attention transfer loss L a is affected by 

ultiple factors. For example, without pseudo-labeling or storing a 

mall amount of old data, the number of image regions belonging 

o old classes decreases, causing loss term L a much smaller (com- 

ared with the cross-entropy loss term, L c ). In this case, λa needs 

o be set to a larger constant for the self-attention transfer loss L a 
o play its role during continual learning. A more adaptive setting 

f the hyperparameter λa should be further explored. Furthermore, 

he proposed SATS method can be applied to other continual tasks 

ncluding continual classification learning. However, such an exten- 

ion has not been investigated in this study. 
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. Conclusion 

In this study, a novel method, SATS, is proposed to effectively 

ransfer within-class and between-class relational knowledge in- 

ormation from the old model to the new model during contin- 

al semantic segmentation. The relationship information can be 

btained using self-attention maps from vision transformer mod- 

ls such as SegFormer, which provides complementary knowledge 

ot satisfactorily captured by the output of the conventional con- 

olution layers or fully connected layers in deep learning models. 

he proposed class-specific region pooling over self-attention maps 

an provide more efficient representations of both the within- and 

etween-class knowledge in each image. Such an efficient repre- 

entation allows the model to be flexibly updated. Therefore, a su- 

erior trade-off exists between model stability and flexibility dur- 

ng continual learning. The proposed SATS method is not only com- 

lementary to some knowledge distillation strategies but also to 

ther types of continual semantic segmentation strategies includ- 

ng the pseudo-labeling strategy, and an example replay strategy. 

e believe that the proposed SATS can become a useful plug-and- 

lay component that can be flexibly embedded in existing or fu- 

ure continual semantic segmentation frameworks. One by-product 

f this study is the observation of the superior performance of the 

ransformer model over conventional convolutional models on con- 

inual semantic segmentation regardless of strategies used for con- 

inual learning. The proposed self-attention transfer strategy and 

he transformer-style models would also work for other continual 

earning tasks, such as continual classification and detection learn- 

ng. However, this study is limited in exploring the effectiveness of 

he proposed SATS method under more continual learning stages 

r continual learning without storing any old data, which will be 

nvestigated in future work. 
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