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A deep learning model and human-machine fusion
for prediction of EBV-associated gastric cancer
from histopathology
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Epstein–Barr virus-associated gastric cancer (EBVaGC) shows a robust response to immune

checkpoint inhibitors. Therefore, a cost-efficient and accessible tool is needed for dis-

criminating EBV status in patients with gastric cancer. Here we introduce a deep convolu-

tional neural network called EBVNet and its fusion with pathologists for predicting EBVaGC

from histopathology. The EBVNet yields an averaged area under the receiver operating curve

(AUROC) of 0.969 from the internal cross validation, an AUROC of 0.941 on an external

dataset from multiple institutes and an AUROC of 0.895 on The Cancer Genome Atlas

dataset. The human-machine fusion significantly improves the diagnostic performance of

both the EBVNet and the pathologist. This finding suggests that our EBVNet could provide an

innovative approach for the identification of EBVaGC and may help effectively select patients

with gastric cancer for immunotherapy.
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Gastric cancer (GC) is the fifth most common cancer
globally and the fourth leading cause of cancer deaths
worldwide1. In 2020, there were over one million new

cases of GC, with the highest rate of incidence in Eastern Asia1.
According to The Cancer Genome Atlas (TCGA) Research Network,
GCs are classified into four molecular subtypes: Epstein-
Barr virus (EBV)-positive tumors, microsatellite instable tumors
(MSI), genomically stable tumors, and chromosomal instable
tumors2. EBV-positive GC, also known as EBV-associated GC
(EBVaGC), comprises ~9% of all GC cases and is a distinct subset of
gastric cancer2 that may respond remarkably well to immune
checkpoint inhibitors3–5 and have a favorable prognosis6,7.

EBV testing is routinely recommended for GC patients in order
to identify such a small group of responders for immunotherapy8.
The most common method for evaluating EBV status in tumor
tissues is in situ hybridization (ISH) targeting EBV-encoded small
RNAs (EBERs) in histopathologic samples9. However, EBV test-
ing by ISH is time-consuming and not cost-saving. Currently,
there is no alternative to universal EBV testing. Therefore, a more
cost-efficient and accessible tool is needed for confirmatory EBV
testing to assist in patient selection, thereby reducing the unne-
cessary cost for patients with EBV-negative GC (EBVnGC).

Deep learning has been successfully used to identify cancer
subtypes and molecular features on hematoxylin and eosin
(H&E)-stained histopathological slides, and as such has the
potential to serve as a promising cancer biomarker10,11. Several
studies have demonstrated that deep learning models can accu-
rately predict the MSI status of colorectal cancer through H&E-
stained digital whole slide images (WSIs), with an area under the
receiver operating curve (AUROC) of 0.77–0.9612–14. Moreover,
deep learning models can predict the molecular subtype of
muscle-invasive bladder cancer from H&E-stained slides15 and
the hormonal receptor status of breast cancer from histopatho-
logical images16. Herein, we hypothesize that a deep learning
model may facilitate EBVaGC prediction and refine the selection
for confirmatory EBV testing.

An image-based deep learning model has the potential to
improve visual diagnostic accuracy. In patients with EBVaGC,
H&E-stained slides possess some morphological features that could
be recognized by pathologists, including poorly differentiated
adenocarcinoma and massive lymphocyte infiltration17,18. Pathol-
ogists triage patients for the confirmative EBV testing on the basis
of these features. Besides these recognizable features, a deep
learning model might extract more characteristics of EBVaGC that
pathologists have not been aware of, consequently predicting EBV
status more accurately.

Here we introduce an innovative deep learning model called
EBVNet to predict EBV status among patients with GC using
H&E-stained slides. More importantly, we further develop a
simple yet effective and novel human-machine fusion strategy for
the clinical and practical use of the deep learning model.

Results
Patients cohorts. Three cohorts were included in this study
(Supplementary Fig. 1). The Internal-STAD was used as an
internal dataset to develop the EBVNet, enrolling 203 H&E-
stained WSIs from 145 patients with EBVaGC and 803 WSIs
from 582 patients with EBVnGC in a single medical center.
MultiCenter-STAD and TCGA-STAD were served as two inde-
pendent external validation datasets. MultiCenter-STAD com-
prised 417 WSIs from 417 patients, including 98 patients with
EBVaGC and 319 patients with EBVnGC. TCGA-STAD con-
tained 234 H&E-stained WSIs from 218 patients with EBVnGC
and 24 WSIs from 21 patients with EBVaGC. The details of the
three datasets were summarized in Supplementary Table 1.

Diagnostic performances of tumor detector. To fully automate
the process of EBV status prediction, a tumor detector was
developed based on the internal dataset and used to automatically
detect the tumor region of gastric cancer slides on the external
datasets. Only the automatically detected tumor regions were
used for the prediction of EBV status by the EBVNet. We found
that the tumor detector achieved a sensitivity of 0.964 and an
AUROC of 0.862 on the MultiCenter-STAD, and a sensitivity of
0.945 and an AUROC of 0.848 on the TCGA-STAD (Supple-
mentary Table 2).

Performance of EBVNet. ResNet50 was utilized as the default
backbone for training and validating the EBVNet to predict EBV
status of gastric cancer slides (Supplementary Notes and Sup-
plementary Table 3). The workflow of EBVNet was depicted in
Fig. 1. On the Internal-STAD, the AUROC of the testing set on
each fold ranged from 0.954 to 0.981 (Supplementary Table 4).
Over all testing folds, the EBVNet obtained an AUROC of 0.969,
a sensitivity of 0.857, specificity of 0.903, and a negative predictive
value (NPV) of 0.962.

On the MultiCenter-STAD, EBVNet yielded an AUROC of
0.941 [95% confidence interval (CI) 0.92–0.97], sensitivity of
0.969 (95% CI 0.91–0.99) and specificity of 0.759 (95% CI
0.71–0.81). To mimic the general prevalence of EBVaGC in
clinics, we further tested the diagnostic performance 10 times by
randomly sampling slides with ~9% proportion being EBVaGC
on the MultiCenter-STAD datasets. The AUROC ranged from
0.922 to 0.957 (Supplementary Table 5). The averaged AUROC
with ~9% proportion being EBVaGC was similar to that with
23.5% proportion being EBVaGC on the MultiCenter-STAD
(0.943 vs 0.941, P= 0.720). On the TCGA-STAD, EBVNet
achieved an AUROC of 0.895 (95% CI 0.84–0.95), a sensitivity of
0.792 (95% CI 0.58–0.93), and specificity of 0.833 (95% CI
0.78–0.88) (Supplementary Fig. 2). As shown in Supplementary
Table 6, the performance of EBVNet was stable for EBV
prediction when training with different random seeds.

Pathologist Reader’s performance. To compare the diagnostic
performance of EBVNet with those of pathologists in predicting
EBV status of gastric cancer slides, a pathologist reader study was
conducted on MultiCenter-STAD and TCGA-STAD datasets.
Pathologists reviewed H&E-stained slides and determined EBV
status based on the morphological features. The diagnostic per-
formance improved as the pathologists increased in their years of
experience. On the MultiCenter-STAD, Junior pathologist 1,
Junior pathologist 2, Senior pathologist 1, Senior pathologist 2,
Expert pathologist 1, and Expert pathologist 2 achieved an
AUROC of 0.782 (95% CI: 0.74–0.82), 0.782 (95% CI: 0.74–0.82),
0.812 (95% CI: 0.77–0.85), 0.783 (95% CI: 0.74–0.82), 0.821 (95%
CI: 0.78–0.86), and 0.816 (95% CI: 0.78–0.85), respectively.
Pathologists achieved a sensitivity ranging from 0.633 to 0.714,
and specificity from 0.850 to 0.959 on the MultiCenter-STAD. On
the TCGA-STAD, Junior pathologist 1, Junior pathologist 2,
Senior pathologist 1, Senior pathologist 2, Expert pathologist 1,
and Expert pathologist 2 had an AUROC of 0.640 (95% CI:
0.58–0.70), 0.629 (95% CI: 0.57–0.69), 0.674 (95% CI: 0.61–0.73),
0.676 (95% CI: 0.62–0.73), 0.737 (95% CI: 0.68–0.79), and 0.732
(95% CI: 0.67–0.79), respectively. Pathologists yielded a sensi-
tivity from 0.417 to 0.542, and specificity from 0.842 to 0.932. On
each of the two external sets, the AUROC of EBVNet was sig-
nificantly better than that of all the six pathologists (P < 0.001)
(Fig. 2). The sensitivity of EBVNet was higher than that of all
these pathologists, while the specificity of EBVNet was slightly
lower than that of pathologists (Table 1). In terms of the inter-
observer agreement, the Kappa value of junior pathologists,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30459-5

2 NATURE COMMUNICATIONS |         (2022) 13:2790 | https://doi.org/10.1038/s41467-022-30459-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


senior pathologists, and expert pathologists was 0.654, 0.719, and
0.698, respectively, on MultiCenter-STAD. On TCGA-STAD, the
Kappa value of junior pathologists, senior pathologists, and expert
pathologists was 0.552, 0.708, and 0.585, respectively.

Human-machine fusion. To investigate the application
scenario of the deep learning model in clinical practice, we further
developed a human-machine fusion strategy to integrate the
model into the universal testing paradigm. As shown in Supple-
mentary Table 7, the comparison results of different human-
machine fusion strategies indicated that our fusion strategy out-
performed other fusion strategies in most cases. Our fusion of the
EBVNet and each pathologist with a varying level of expertise
further improved the performance of both the EBVNet and the
pathologist.

On the MultiCenter-STAD, the prediction fusion from the
EBVNet with Junior pathologist 1, Junior pathologist 2, Senior
pathologist 1, Senior pathologist 2, Expert pathologist 1, and
Expert pathologist 2 achieved an AUROC of 0.945 (95% CI:

0.92–0.97; P= 0.581), 0.951 (95% CI: 0.93–0.97; P= 0.143), 0.960
(95% CI: 0.94–0.98; P= 0.011), 0.960 (95% CI: 0.94–0.98;
P= 0.008), 0.960 (95% CI: 0.94–0.98; P= 0.015), and 0.969
(95% CI: 0.95–0.98; P < 0.001), respectively, outperforming that of
the EBVNet alone (0.941). The sensitivity of human-machine
fusion ranged from 0.878 to 0.969 and specificity ranged from
0.781 to 0.909 on the MultiCenter-STAD.

On the TCGA-STAD, the prediction fusion from the EBVNet
and Junior pathologist 1, Junior pathologist 2, Senior pathologist
1, Senior pathologist 2, Expert pathologist 1, and Expert
pathologist 2 yielded an AUROC of 0.915 (95% CI: 0.87–0.97;
P= 0.239), 0.916 (95% CI: 0.87–0.97; P= 0.176), 0.925 (95% CI:
0.89–0.97; P= 0.167), 0.928 (95% CI: 0.89–0.96; P= 0.035), 0.931
(95% CI: 0.89–0.98; P= 0.080), and 0.939 (95% CI: 0.90–0.98;
P < 0.001), respectively, better than that of the EBVNet alone
(0.895) although some results did not reach a significantly
statistical difference. The sensitivity of human-machine fusion
ranged from 0.625 to 0.917 and specificity ranged from 0.846 to
0.923 on the TCGA-STAD (Table 2 and Fig. 3).

Fig. 1 The workflow of EBVNet for predicting EBV status with hematoxylin and eosin-stained WSIs. Each WSI was preprocessed and tessellated into
non-overlapped tiles of ×10 magnification. After color normalization, tiles were resized to 224 × 224 pixels and then input to the tumor detector. Only tiles
from regions recognized as tumor were fed to EBVNet to get tile-level probabilities for EBV status. The five well-trained individual classifiers were
ensembled to form the EBVNet at the output layer of individual classifiers. The average probability outputs of the five individual classifiers were used as the
prediction of the ensembled model EBVNet. Tile-level probabilities were averaged to generate a slide-level probability of EBV status. EBV Epstein-Barr
Virus, WSI whole slide image.
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Association between the histopathological features and the
EBVaGC prediction. To reveal the black-box nature of deep
learning model, we further built multivariate logistic regression
models to evaluate the association between the histopathological
features and the EBVNet’s EBVaGC prediction. On the Multi-
Center-STAD, the EBVaGC prediction was significantly corre-
lated with medullary histology [odd ratio (OR), 58.73; P < 0.001],
mucinous differentiation (OR, 0.30; P= 0.011), signet-ring cell
differentiation (OR, 0.42; P= 0.010), poor differentiation (OR,
5.17; P < 0.001). On the TCGA-STAD, the EBVaGC prediction
was significantly associated with medullary histology (OR, 9.20;
P= 0.006), papillary differentiation (OR, 0.17; P= 0.003) and
vacuolar nucleus or recognizable nucleolus (OR, 3.86; P < 0.001)
(Fig. 4 and Table 3). The number of morphological features on
different datasets are shown in Supplementary Table 8.

Misdiagnosis from EBVNet. The misdiagnosis of EBVNet was
further analyzed to better understand this deep learning model.
On the MultiCenter-STAD, the EBVNet misdiagnosed 80 out of
417 slides, including 3 slides of EBVaGC and 77 slides of
EBVnGC. Among the 3 misdiagnosed EBVaGC slides, 2 slides
were misdiagnosed by all pathologists and the remaining one
slide was misdiagnosed by one pathologist. Among the 77 mis-
diagnosed EBVnGC slides, 7 slides were misdiagnosed by all
pathologists, 30 slides were diagnosed correctly by all patholo-
gists, and the remaining 40 slides were misdiagnosed by at least
one pathologist. To analyze the morphological features of EBV-
Net’s misdiagnosed cases, we compared the features of false-
positive cases with those of true negative cases and the features of
false-negative cases with those of true-positive cases. Compared
to true negative cases, these 77 false-positive cases were more
likely to occur in female patients (P= 0.017), have the presence of
medullary histology (P < 0.001), poor differentiation (P < 0.001),
vacuolar nucleus or recognizable nucleolus (P= 0.005), and the
absence of mucinous differentiation (P= 0.008), adenoid differ-
entiation (P < 0.001), and papillary differentiation (P= 0.008)
(Supplementary Fig. 3 and Supplementary Table 9).

On the TCGA -STAD, the EBVNet misdiagnosed 44 out of
258 slides, including 5 EBVaGC slides and 39 EBVnGC slides.
Among the 5 misdiagnosed EBVaGC slides, 3 were misdiagnosed
by all pathologists and the other 2 were misdiagnosed by at least 1
pathologist. Among the 39 misdiagnosed EBVnGC slides, 4 were

misdiagnosed by all pathologists, 15 were diagnosed correctly by all
pathologists, and the other 20 were misdiagnosed by at least 1
pathologist. Compared to true negative cases, these 39 false-positive
cases were more likely to occur in female patients (P= 0.002), have
the presence of medullary histology (P < 0.001), poor differentiation
(P= 0.002), and vacuolar nucleus or recognizable nucleolus
(P < 0.001), and the absence of adenoid differentiation (P= 0.036)
and papillary differentiation (P < 0.001) (Supplementary Table 10).

Discussion
In this study, we used three diverse datasets to confirm that the
innovative deep learning model EBVNet could automatically
predict EBV status among gastric cancer H&E-stained WSIs with
high performance. Specifically, the EBVNet’s diagnostic perfor-
mance surpassed that of board-certified pathologists and this
model could be generalized to heterogeneous clinical scenarios,
including a variety of H&E-stained slides, different medical
centers, and patient populations. More importantly, our study
further indicated that a human-machine fusion could improve
the EBVNet’s performance in identifying EBVaGC, although a
further prospective clinical trial would be needed for the con-
firmation of its validity. These findings suggest that the EBVNet
can serve as an efficient approach to identify EBVaGC as well as a
promising biomarker to select GC patients for immunotherapy.

To our best knowledge, our study is the first one to report
pathologists’ performance in identifying EBV status from H&E-
stained slides. Although EBV testing is routinely recommended
for GC patients, many GC patients remain EBV-untested due to
the high cost and EBV-ISH accessibility. Therefore, only those
patients with a high possibility of EBVaGC are selected for EBV
testing based on pathologists’ pre-assessments. Although the
H&E slides of EBVaGC contain some discriminative features17,19,
pathologists, even those with more than ten years of specialized
gastrointestinal experience, still had poor to moderate inter-
observer agreements and unsatisfactory diagnostic performances.

Also, this study is the first investigation that compares the
performance of a deep learning model to that of pathologists
regarding EBVaGC prediction. The AUROC of EBVNet was
significantly better than that of all pathologists. Note that the
method of calculating the AUROC has been used in dichotomous
classification12,20, although it might be unfair to pathologists
considering that pathologists, in general, cannot give a specific

a b

Fig. 2 Diagnostic performances of EBVNet and pathologists on two external datasets. a On the MultiCenter-STAD, the EBVNet achieved an AUROC of
0.941, outperforming all the six pathologists with an AUROC ranging from 0.782 to 0.821 (P < 0.001, Delong’s test, two-sided). b On the TCGA-STAD, the
EBVNet achieved an AUROC of 0.895, better than all the pathologists with an AUROC ranging from 0.629 to 0.737 (P < 0.001, Delong’s test, two-sided).
MultiCenter-STAD an external dataset from multiple medical centers, TCGA-STAD an external dataset from The Cancer Genome Atlas, AUROC area
under the receiver operating curve.
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prediction probability score for each data. To draw a fairer
comparison, we compared the sensitivity and specificity of
EBVNet with those of pathologists according to their dichot-
omous classification into EBVaGC or EBVnGC21. The sensitivity
of EBVNet was higher than that of all the pathologists in two
external tests while the specificity of EBVNet was slightly lower

than that of pathologists. With such a higher sensitivity, the
EBVNet can be more potentially served as a screening tool to
select patients for the confirmatory EBV testing, thus reducing
the misdiagnosis of EBVaGC.

A recent study has shown that a deep learning-based classifier
can detect the EBV status with AUROC values ranging from

a b c
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0.672 to 0.85922, but did not report key clinical metrics, such as
sensitivity and specificity. More importantly, no comparison was
made between the performance of the deep learning model and
the human-performed model. Therefore, it remains unknown
whether an automated deep learning-based model could provide
added value for current clinical EBV testing. In this study, the
EBVNet outperformed the published model with AUROCs of
0.941 vs 0.895. A direct comparison between the EBVNet and the
published classifier22 on the same TCGA database demonstrated
that the EBVNet’s performance was superior (AUROC: 0.895
[95% CI: 0.84, 0.95] vs 0.819 [95% CI: 0.73, 0.90]) in detecting
EBV status from histopathologic slides, indicating the better
effectiveness of our deep learning model in screening patients for
the confirmation of EBV status.

It is worth noting that when developing a deep learning model
on the Internal-STAD dataset, data imbalance between EBVaGC
(minority) and EBVnGC (majority) would cause the developed
AI model to predict the majority class (EBVnGC) during infer-
ence in external validation or future application. Besides widely
used data augmentation techniques for model training, more
cases of EBVaGC may directly help the model learn positive
features (of the minority class EBVaGC) better. Thus, to develop
a EBVNet which can better predict EBVaGC, we included all
available slides from the patients with EBVaGC in the Internal-
STAD. To analyze the impact of the proportion of EBVaGC on
the model performance, we further tested the diagnostic perfor-
mance by randomly sampling slides with ~9% proportion being
EBVaGC on the MultiCenter-STAD dataset. We observed that
the EBVNet achieved equivalent AUROCs on the subsets of
MultiCenter-STAD and TCGA-STAD (with about 9% prevalence
of EBVaGC). Taken together, our results suggest that the diag-
nostic performance of EBVNet model works very well and is less
affected by the proportion of EBVaGC.

Deep learning models have often been regarded as black
boxes10,23, offering no transparency into how they work. To
interpret the EBVNet, we first constructed a logistic regression
model to find the features associated with the prediction of the
EBVNet. In addition to recognizable features, the EBVNet might
be potentially able to extract more characteristics of EBVaGC that
have yet to be identified in the previous histopathological study23.
It is possible that further studies using larger datasets might
provide other morphological features that are significantly asso-
ciated with EBVaGC. By analyzing EBVNet’s misdiagnosed cases,
we found that the false-positive cases possessed some morpho-
logical features of EBVaGC while the false-negative cases had
some characteristics of EBVnGC. Most cases that the EBVNet
misdiagnosed were also incorrectly predicted by at least one
pathologist, indicating that these cases indeed possessed some
confounding features. Taken together, these findings imply that
certain effective methods should be developed to overcome this

issue and improve the diagnostic performance in future
investigations.

Given the prediction uncertainties of both the EBVNet model
and the pathologists, we developed and tested a simple yet
effective and novel human-machine fusion strategy in these
settings. To the best of our knowledge, this is the first study to
adaptively fuse predictions from a deep learning model and a
human expert based on their prediction uncertainties. To report
the prediction confidence of pathologists, we applied the 5-scale
self-confidence score method, which is less fine-grained but
more clinically practical. The diagnostic performance of the
human-machine fusion outperformed that of both the EBVNet
and pathologists with varying levels of experience and expertise
alone, suggesting that any pathologist could combine the
EBVNet’s prediction with his or her own diagnosis to obtain an
overall expert-level diagnosis performance. In terms of clinical
application, such a human-in-the-loop diagnosis system could
be integrated into the current universal testing paradigm in two
ways. The first one is to apply the EBVNet as a screening tool.
When the prediction of EBVNet encounters a low confidence
score, pathologists can help the model perform the prediction.
The second way is to let pathologists do the screening based on
the morphological characteristics, and EBVNet can assist the
pathologists in making the decision when they are not confident
enough. The two ways can be potentially applied in the current
universal EBV testing paradigm but need further studies to
obtain more evidence for the efficacy of the human-in-the-loop
system.

While promising results have been obtained from our EBV-
Net, there do exist several limitations in our study. First, the
EBVNet was trained and validated retrospectively, and a rig-
orous and prospective clinical study is needed to obtain more
robust evidence. Second, although the logistic regression model
indicated that our EBVNet made biological sense, this method
is still an indirect way to interpret the EBVNet. Going forward,
more intuitive visualization methods should be attempted in
order to interpret the black-box nature of the EBVNet. More
importantly, the fusion of the EBVNet and a pathologist should
be further evaluated to confirm the improved diagnostic per-
formances in future studies. To potentially further improve the
performances of predicting EBV status in gastric cancer slides
by deep learning models, besides human-machine fusion, the
following aspects may be considered, including the combination
of current imaging data with clinical data (tumor manifestation,
serum EBV DNA, etc) or multimodality features (like radiomics
features), the replacement of network backbones with more
recently developed ones (such as Vision Transformer24),
ensemble model based on different network backbones, and a
multi-scale deep learning model by combining different mag-
nifications of slides.

Fig. 3 Fusion of predictions from the EBVNet and each pathologist on two external datasets. a–e On the MultiCenter-STAD, the prediction fusion from
the EBVNet and Junior pathologist 1, Junior pathologist 2, Senior pathologist 1, Senior pathologist 2, Expert pathologist 1, and Expert pathologist 2 achieved
an AUC of 0.945 (95% CI: 0.92–0.97; P= 0.581 when compared with EBVNet by Delong’s test, two-sided), 0.951 (95% CI: 0.93–0.97; P= 0.143), 0.960
(95% CI: 0.94–0.98; P= 0.011), 0.960 (95% CI: 0.94–0.98; P= 0.008), 0.960 (95% CI: 0.94–0.98; P= 0.015), and 0.969 (95% CI: 0.95–0.98;
P < 0.001), respectively, outperforming that of the EBVNet alone (0.941). g–l On the TCGA-STAD, the prediction fusion from the EBVNet and Junior
pathologist 1, Junior pathologist 2, Senior pathologist 1, Senior pathologist 2, Expert pathologist 1, and Expert pathologist 2 yielded an AUC of 0.915 (95%
CI: 0.87–0.97; P= 0.239), 0.916 (95% CI: 0.87–0.97; P= 0.176), 0.925 (95% CI: 0.89–0.97; P= 0.167), 0.928 (95% CI: 0.89–0.96; P= 0.035), 0.931
(95% CI: 0.89–0.98; P= 0.080), and 0.939 (95% CI: 0.90–0.98; P < 0.001) respectively, better than that of the EBVNet alone (0.895). MultiCenter-STAD
an external dataset from multiple medical centers, TCGA-STAD an external dataset from The Cancer Genome Atlas, AUC area under the receiver
operating curve, 95% CI 95% confidence intervals, Junior 1-EBVNet the prediction fusion from the EBVNet and Junior pathologist 1, Junior 2-EBVNet the
prediction fusion from the EBVNet and Junior pathologist 2, Senior 1-EBVNet fusion the prediction fusion from the EBVNet and Senior pathologist 1, Senior
2-EBVNet fusion the prediction fusion from the EBVNet and Senior pathologist 2, Expert 1-EBVNet fusion the prediction fusion from the EBVNet and Expert
pathologist 1, Expert 2-EBVNet fusion the prediction fusion from the EBVNet and Expert pathologist 2.
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Methods
Study participants. This study was approved by the Institutional Review Board of
Sun Yat-sen University Cancer Center. To develop EBVNet, we used three
pathological image datasets, including the internal dataset from a single medical
center (Internal-STAD), the external dataset from multiple medical centers
(MultiCenter-STAD), and the well-known public dataset from The Cancer Gen-
ome Atlas (TCGA-STAD), to achieve a broad patient representation and improve

the ability to generalize our findings. Internal-STAD was served as a training
dataset that comprised all available slides from the patients with EBVaGC and
randomly-chosen slides from the pool of all patients with EBVnGC in one medical
center. On MultiCenter-STAD, the GC patients with available EBV status were
randomly included in this study. On TCGA-STAD, patients with the known EBV
status were obtained from the TCGA database. The inclusion criteria for this study
were the followings: (1) patients with GC underwent primary gastrectomy at the

a

b

c

d

e

f

EBVNon-EBV
5 mm 0.5mm
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individual hospitals between Jan 1, 2014 and Dec 31, 2020; (2) patients with known
EBV status; (3) availability to the clinical data and H&E-stained tumor slides. The
exclusion criteria included the followings: (1) patients with preoperative therapy
(such as neoadjuvant radiotherapy or chemotherapy); (2) patients with incomplete
clinical information; (3) unqualified slide scanning (such as slides out of focus or
obvious tissue folds). The informed consent was waived because patients were not
directly recruited for this study.

Slide scanning and annotations. One or two representative H&E-stained tumor
slides from each patient’s resection from the Internal-STAD and the MultiCenter-
STAD were scanned at ×40 magnification (0.25 μm/pixel) on an Aperio
AT2 scanner (Leica Biosystems; Wetzlar, Germany) to generate one or two WSIs in
SVS format. The diagnostic slides from TCGA-STAD were downloaded at the
Genomic Data Commons portal (https://portal.gdc.cancer.gov/). Blinded to
patients’ information and the ground truth of EBV status, two junior pathologists
used the software-QuPath opensource25 (version 0.2.3) to annotate the slides by
drawing regions of interest around the tumor area. Then a senior pathologist
checked and revised the annotations. The annotations created by the pathologists
were served as the reference standard for tumor detection. Details of WSI pro-
cessing can be found in Supplementary Methods.

Determination of EBV status. The ground-truth EBV status from the Internal-
STAD and MultiCenter-STAD datasets was determined using ISH targeting EBERs
in histopathologic samples at their respective institutions (Supplementary Fig. 4)
since EBERs are consistently expressed in all latent EBV infection types26,27. The
EBV status for the TCGA-STAD was defined by the previously published study
through genetic sequencing2. Similar sensitivity and reliability between EBV DNA
detection and EBER-ISH were observed in the previous study, suggesting that
EBERs ISH was interchangeable with genetic sequencing for identifying EBV
status28.

Tumor detector. To fully automate the analysis of gastric cancer WSIs, a tumor
detector was developed mainly based on the internal dataset and then used to
automatically find the tumor regions in each slide from the two external validation
datasets. The detected tumor regions were then further analyzed by the EBVNet. A
well-known convolutional neural network ResNet50 was used as the classifier
backbone for the tumor detector. For tumor detection, 1006 GC slides of Internal-
STAD manually outlined by pathologists were set as tumor tissues. In GC cases
with diffuse type, it is very difficult to define clear boundaries between adjacent
normal mucus and tumor. Thus, we randomly selected 145 additional gastric tis-
sues free of tumors and set them as normal tissues. In this study, the size of each

tile is 512-by-512 pixels with a magnification ×10. During training, the dataset was
split into five-folds, and the five-fold cross-validation strategy was adopted to train
five individual tumor classifiers, each time using four folds to train the classifier and
another fold of data as internal validation set to determine when to stop the
training (i.e., when the performance of the classifier does not further improve on
the internal validation set). Stochastic gradient descent (SGD) optimizer with batch
size 64 and weight decay 0.0005 was used to train each classifier for maximally 50
epochs. The learning rate starts from 0.001 and changes with a cosine annealing
schedule. After five individual tumor classifiers were well trained, for any input tile
from a new slide on the external datasets, the probability outputs of the five
classifiers were averaged as the final output of the ensemble tumor detector. The
input tile was classified as ‘tumor’ class when the average probability is larger
than 0.5.

EBVNet development. To predict whether a patient belongs to the EBV subgroup
or not, an ensemble binary classifier called EBVNet with any network backbone
(e.g., ResNet50, VGGNet, EfficientNet) can be trained based on the internal dataset
from Internal-STAD. During training, the dataset was divided into five-folds at the
slide level, and the five-fold cross-validation strategy was employed to train five
individual classifiers first. In particular, for each individual classifier, four folds of
data were used to train the classifier and the remaining one was utilized as an
internal validation set to determine when to stop training the classifier. For the
training of each classifier, each slide was regularly divided into multiple tiles (i.e.,
image patches) with tile sizes 512-by-512 pixels, and only the tiles from the tumor
regions and their labels (1 for ‘EBV’, 0 for ‘non-EBV’) were used respectively as the
inputs and the expected outputs of the classifier. A tile in a slide is considered from
the tumor region when 50% pixels of the tile are within the pre-segmented tumor
region in the slide. About 52,600 EBV tiles and 178,500 non-EBV tiles were
obtained for the training of each individual classifier, and about 15,600 EBV tiles
and 63,400 non-EBV tiles for internal validation. For each individual classifier,
SGD optimizer with batch size 64 and weight decay 0.0005 was used to train the
model for maximally 150 epochs. The learning rate starts from 0.001 and changes
with a cosine annealing schedule. The training was stopped when the classifier
performance on the internal validation set was not further improved over 5 con-
secutive epochs or at the last (maximum) epoch. It has been consistently observed
that classifier training converged after 100 epochs or so. Such classifier training
process was repeated five times to generate five individual classifiers, each time with
a different fold as the internal validation set. The five well-trained individual
classifiers were ensembled to form the EBVNet at the output layer of individual
classifiers, i.e., the average probability outputs of the five individual classifiers are
used as the prediction of the ensembled model EBVNet. Since the ensemble
EBVNet was used to predict EBV status for each tile rather than for each slide, to

Fig. 4 Successful cases predicted by EBVNet. a–c Histological image (left column) of patients with EBVaGC in a–c were from Internal-STAD, MultiCenter-
STAD, and TCGA-STAD, respectively. The heatmaps overlapped on these three WSIs (middle column) showed that tumor tiles were mainly predicted as
EBVaGC with a high score (reddish color). Tiles with a high score were mainly localized in areas of medullary histology, poor differentiation, and tumor with
vacuolar nucleus or recognizable nucleolus (right column, tiles at ×10 magnification). d–f Histological image (left column) of patients with EBVnGC in
d–f were from Internal-STAD, MultiCenter-STAD, and TCGA-STAD, respectively. The heatmaps overlapped on these three WSIs (middle column) showed
that tumor tiles were mainly predicted as EBVnGC with a low EBV score (bluish color). All results could be reproduced stably by EBVNet. Tiles with a low
score were more likely localized in areas of adenoid differentiation, mucinous differentiation, and signet-ring cell differentiation (right column, tiles at ×10
magnification). EBV Epstein-Barr Virus, EBVaGC Epstein-Barr Virus-associated gastric cancer, EBVnGC Epstein-Barr Virus negative gastric cancer.

Table 3 Logistic regression models for the association between the morphological features and EBVNet’s prediction on external
datasets.

Features MultiCenter-STAD TCGA-STAD

Univariate Multivariate Univariate Multivariate

OR P OR P OR P OR P

Tertiary lymphoid structure 1.50 (1.00, 2.25) 0.050 NA NA 1.45 (0.80, 2.61) 0.222 NA NA
Medullary histology 193.17 (26.49,

1408.74)
<0.001 58.73 (7.75,

445.00)
<0.001 28.60 (6.23,

131.22)
<0.001 9.20

(1.87, 45.22)
0.006

Mucinous differentiation 0.14 (0.06, 0.33) <0.001 0.30 (0.12, 0.76) 0.011 0.71 (0.32, 1.57) 0.400 NA NA
Adenoid differentiation 0.41 (0.27, 0.61) <0.001 0.79 (0.41, 1.53) 0.492 0.43 (0.24, 0.78) 0.005 1.31 (0.53, 3.22) 0.563
Papillary differentiation 0.17 (0.08, 0.36) <0.001 0.55 (0.22, 1.40) 0.208 0.11 (0.04, 0.33) <0.001 0.17 (0.05, 0.53) 0.003
Signet-ring cell 0.38 (0.23, 0.63) <0.001 0.42 (0.22, 0.82) 0.010 0.50 (0.18, 1.34) 0.165 NA NA
Poor differentiation 7.37 (4.38, 12.40) <0.001 5.17 (2.46, 10.87) <0.001 4.02 (2.12, 7.64) <0.001 2.33 (0.92, 5.90) 0.075
Vacuolar nucleus or
recognizable nucleolus

4.30 (2.82, 6.55) <0.001 1.67 (0.98, 2.84) 0.059 4.11 (2.16, 7.80) <0.001 3.86 (1.87, 7.98) <0.001

95% confidence intervals are included in brackets. The data have been provided in the Source Data file.
OR odds ratio, MultiCenter-STAD external dataset from multiple medical centers, TCGA-STAD external dataset from The Cancer Genome Atlas, NA not applicable.
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predict the EBV status of any slide, the EBVNet predictions over all tiles from the
tumor regions in the slide were averaged as the final EBV prediction probability for
the slide. The diagnostic performances of different model backbones (including
VGGNet16, ResNet18, ResNet50, SE_ResNet50, DenseNet121, EfficientNet-B0 and
EfficientNet-B1) on Internal-STAD were compared.

EBVNet evaluation. The EBVNet was internally evaluated with the Internal-STAD
dataset and externally assessed with two external datasets, the MultiCenter-STAD
and TCGA-STAD. For the external testing, the developed ensembled EBVNet
classifier was used to predict the EBV probability at the slide level, and the pre-
dictions were compared with the ground-truth EBV status for each external
dataset. For the internal evaluation, to faithfully simulate the external evaluation
scenario, the five-fold cross-validation strategy was applied as follows. First, one-
fold of the internal dataset was held-out as the simulated external test set, and the
other four folds were further divided into five new subsets to train an ensemble AI
model for the external evaluation. Then, the ensemble model was evaluated on the
held-out one-fold at the slide level. Such a process was repeated five times, each
time with a different one-fold as the simulated test set. In this way, every slide on
the internal dataset was used once for evaluation, and the EBV status predictions of
all slides were finally compared with the corresponding ground-truth EBV status.
Only tiles from tumor regions were used to train and evaluate the model for both
internal and external evaluations.

Pathologist reader study. To investigate whether the EBV status could be iden-
tified by pathologists from H&E-stained slides alone, six pathologists with different
years of experience (two junior pathologists with less than 5 years of experience;
two senior pathologists with about 10 years of experience; and two experts with
specialized in gastric cancer with up to 15 years of experience) were presented with
slides from the MultiCenter-STAD and TCGA-STAD. Blind to all clinical infor-
mation and the performance of EBVNet, pathologists reviewed these slides and
classified each case into EBVaGC or EBVnGC based on their expertise and
experience.

To obtain further insight into associations between specific histopathological
features and EBVNet’s predictions (i.e., EBVaGC or EBVnGC), a logistic regression
model was built to assess the relationship between the histopathological features
and the EBVNet’s prediction. Based on previous studies29, EBVaGC is associated
with some morphological features, including poorly differentiation and tertiary
lymphoid structure. All these reported morphological features are positive features
of EBVaGC but no negative feature reported. Based on the pathologist’s expert
experience with gastric cancer, EBVaGC is also linked to some other positive
morphological features like medullary histology and vacuolar nucleus (most
chromatin distributed at the peripheral nucleus rather than the central nucleus) or
recognizable nucleolus, and negative features like mucinous differentiation,
adenoid differentiation (tumor cells arranged in glandular patterns), papillary
differentiation and signet-ring cell. Therefore, these eight histopathological features
were all included in this study. Two expert pathologists worked together to
determine whether each of the features was present in individual cases.

To further understand EBVNet, we assessed the association between
morphological features and the misdiagnosis of EBVNet. The morphological
features of false-negative cases were compared with that of true-positive cases while
the features of false-positive cases were compared with that of true negative cases.

Human-machine fusion. EBVNet can not only be used to predict EBV status of
patients in a standalone manner, but also be combined with pathologist predictions
in a human-machine fusion manner. In this study, we proposed a simple yet novel
adaptive fusion strategy to combine the predictions of the deep learning model
EBVNet and pathologists with varying degrees of experience, mainly based on their
prediction uncertainties. The details of the human-machine fusion are described
below, with the overall fusion strategy introduced first, followed by the design of
prediction uncertainty for both EBVNet and pathologists. It is worth noting that
the human-machine fusion is predefined and not involved in the training of
EBVNet.

Suppose an EBVNet has been well trained and prepared to collaborate with a
pathologist to predict the EBV status of a patient. Based on the slide data of the
patient, denote by Pm and Ph the two-dimensional output probability vectors from
the EBVNet and the pathologist, respectively, and um and uh the prediction
uncertainties from the EBVNet and the pathologist, respectively. Then, 1

um
and 1

uh
can represent prediction certainties (or confidence) from the EBVNet and the
pathologist, respectively. Based on the EBV predictions and prediction certainties
from both the EBVNet and the pathologist, the output of the human-machine
fusion, i.e., the fused prediction Pf from the EBVNet and the pathologist, can be
defined as

pf ¼ α � pm þ 1� αð Þ � ph; ð1Þ

where

α ¼
1
um

1
um

þ 1
uh

Here α represents the relative importance of the prediction from the EBVNet for
the final fusion prediction Pf, and similarly 1− α represents the relative importance
of the prediction from the pathologist. Intuitively, when the EBVNet is more
certain than the pathologist for the EBV prediction, the final prediction Pf will be
more dependent on the model prediction Pm, and vice versa. From Eq. (1), the
main challenge is to obtain the pathologist’s prediction probability Ph and the two
prediction uncertainties um and uh.

For the uncertainty um of the EBVNet prediction, a deep learning model may be
uncertain under two conditions, either when the new slide data are very different
from all those used for model training (called knowledge uncertainty), or when the
new slide data is similar to one or more slides from both the EBV and non-EBV
classes used for model training (called data uncertainty). Fortunately, when the
deep learning model is an ensemble of multiple individual models (as EBVNet),
both types of prediction uncertainties can be captured by the entropy of the
ensemble model’s probability output Pm21,30. Therefore, the uncertainty um for
EBVNet prediction can be estimated by.

um ¼ � pm;1 � lnpm;1 þ pm;2 � lnpm;2

� �
; ð2Þ

where pm,1 and pm,2 are respectively the first and second component of the
probability output Pm of the EBVNet.

In order to obtain the pathologist’s prediction probability Ph and the associated
uncertainty uh, we collected not only his or her diagnosis result (‘EBV’ or ‘Non-
EBV’), but also his or her 5-scale self-confidence on the diagnosis, with ‘1’ to ‘5’,
respectively, representing ‘surely non-EBV’, ‘likely non-EBV’, ‘unsure’, ‘likely EBV’,
and ‘surely EBV’. The five self-confidence scales [1, 2, 3, 4, 5] were simply linearly
transformed to the corresponding probabilities [0.2, 0.35, 0.5, 0.65, 0.8], where the
smallest and largest probability are respectively set to 0.2 and 0.8 (rather than 0 and
1) by considering the potential over-confidence or noise in reported self-
confidence. With this transformed probability, a two-dimensional probability
output Ph can easily be obtained based on the pathologist’s diagnostic result and his
or her self-confidence report. For example, for the diagnosis result ‘EBV’ and self-
confidence ‘5’, Ph would be [0.8, 0.2] where the first component represents the
probability of being ‘EBV’; and for the diagnosis result ‘non-EBV’ and self-
confidence ‘2’, Ph would be [0.35, 0.65]. Once Ph is obtained, the associated
prediction uncertainty uh can be easily estimated by the entropy of Ph, similarly
based on Eq. (2). Finally, after obtaining the pathologist’s prediction Ph and
prediction uncertainty uh, together with the EBVNet prediction Pm and prediction
uncertainty um, the human-machine fusion output can be obtained based on the
designed fusion strategy (Eq. 1).

Besides the proposed human-machine fusion strategy, other human-machine
fusion strategies (‘Or’ strategy, ‘And’ strategy, and ‘1-uncertainty’ strategy) have
been described in the Supplementary Methods. The diagnostic performances of
different human-machine fusion strategies on two external datasets were
compared.

Statistical analysis. Using the ground-truth EBV status as the reference standard,
the AUROCs of EBVNet were calculated according to its prediction scores and the
AUROCs of pathologists were determined based on their dichotomous classifica-
tion into EBVaGC or EBVnGC20. Therefore, in the ROC space, each pathologist
corresponds to a point and EBVNet can provide a continuous curve12. The
AUROC of each pathologist was calculated by the area under two lines that link the
pathologist’s point to (0,0) and (1,1) in the axis, respectively. The AUROC were
calculated and compared by Delong’s test. The cutoff threshold of EBVNet’s
receiver operator characteristic curve was defined by Youden’s J statistic31 to
dichotomize EBVNet’s probabilities into binary predictions for calculating the
sensitivity, specificity, and NPV. This threshold was predefined and determined by
the Internal-STAD before the evaluation of the external datasets. The sensitivity
and specificity were compared using the McNemar test. The baseline data of study
participants from different datasets were compared by variance analysis or Chi-
square test. The morphological features of misdiagnosed cases were compared with
those of correctly diagnosed cases with the Chi-square test or t-test. In terms of the
interobserver agreement, the Kappa value of different-level pathologists was cal-
culated with the Chi-square test. The associations between EBVNet prediction and
morphological features were obtained by logistic regression models. The 95% CIs of
the AUROC were calculated by bootstrapping. Differences were considered sig-
nificant when the P-value from a two-tailed test was less than 0.05. IBM SPSS
Statistics (version 20.0) and Medcalc (vesion 15.2.2) were used for statistical ana-
lysis. Python (version 3.9.6) and the deep learning platform PyTroch (version 1.9)
were used to build the model and analyze the data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA diagnostic whole slides and corresponding labels are available from NIH
genomic data commons (https://portal.gdc.cancer.gov/). Restrictions are applied to the
whole slide images and annotation data of Internal-STAD and MultiCenter-STAD,
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which are used with institutional permission via IRB approval for the current study, and
thus are not publicly available due to patient privacy obligations. All data supporting the
findings of this study are available on requests for non-commercial and academic
purposes from the corresponding author M.C. (caimy@sysucc.org.cn) within 10 working
days. We do not require to sign a data use agreement. Processed data can be reproduced
stably by the source code. Source data are provided as a zip file with the paper. Source
data are provided with this paper.

Code availability
Source code can be available at https://github.com/Kepler1647b/EBVnet.
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