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Abstract Computer systems are increasingly being used
for sports training. Existing sports training systems either
require expensive 3-D motion capture systems or do not pro-
vide intelligent analysis of user’s sports motion. This paper
presents a framework for affordable and intelligent sports
training systems for general users. The user is assumed to per-
form the same type of sport motion as an expert, and therefore
the performer’s motion is more or less similar to the expert’s
reference motion. The performer’s motion is recorded by
a single stationary camera, and the expert’s 3-D reference
motion is captured only once by a commercial motion cap-
ture system. Under such assumptions, sports motion analysis
is formulated as a 3-D–2-D spatiotemporal motion registra-
tion problem. A novel algorithm is developed to perform spa-
tiotemporal registration of the expert’s 3-D reference motion
and a performer’s 2-D input video, thereby computing the
deviation of the performer’s motion from the expert’s motion.
The algorithm can effectively handle ambiguous situations in
a single video such as depth ambiguity of body parts and par-
tial occlusion. Test results on Taichi and golf swing motion
show that, despite using only single video, the algorithm can
compute 3-D posture errors that reflect the performer’s actual
motion error.
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1 Introduction

Computer systems are increasingly being used for sports
training. Two kinds of computer-aided sports training sys-
tems are commercially available: 3-D motion-based systems
and 2-D video-based systems. A 3-D motion-based system
[1,2] uses multiple cameras to track the motion of reflec-
tive markers attached to the performer’s body. The markers’
3-D positions are recovered and used to compute the per-
former’s 3-D motion, which can be analyzed by the coach or
compared with a 3-D reference motion of an expert. Such a
system can provide an accurate motion analysis. However, it
is very expensive and difficult to use for the general users.

A 2-D video-based system [3–6] captures the performer’s
motion using an off-the-shelf video camera and loads the
video into a computer system. The system displays the per-
former’s video and a pre-recorded expert’s video side by
side, and provides tools for the user to manually compare
the performer’s motion with the expert’s motion. The system
is affordable to general users. However, it cannot perform
detailed motion analysis automatically.

To overcome the shortcomings of existing systems, this
paper proposes a framework for affordable and intelligent
sports training systems for general users that require only
single stationary camera to record the user’s motion. Sports
motion analysis is formulated as a 3-D–2-D spatiotempo-
ral motion registration problem (Sect. 3). A novel algorithm
is developed to perform spatiotemporal matching of the 3-D
reference motion of an expert and the 2-D input video of a per-
former, thereby computing the deviation of the performer’s
motion from the expert’s motion (Sects. 4–7). The algorithm
can effectively handle ambiguous situations in single video
such as depth ambiguity of body parts and partial occlusion.
It can be applied to analyze different types of sports motion.
Test results on Taichi and golf swing motion show that the
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algorithm can compute 3-D posture errors that reflect the
performer’s actual motion error using only single video. The
proposed framework can be potentially extended to become
more feasible for real practical applications (Sect. 10).

2 Related work

Our 3-D–2-D spatiotemporal registration problem for sports
motion analysis is closely related to several known research
topics, namely human body tracking, human posture estima-
tion, and video sequence alignment. However, there are fun-
damental differences between them. Human body tracking
[7–9], in general, performs spatial matching between con-
secutive images in the input sequence without using 3-D ref-
erence motion. Human posture estimation infers the 2-D or
3-D body posture from a single or multiple images with-
out solving temporal correspondence. Human body tracking
methods often apply human posture estimation techniques
[10–12]. Video sequence alignment [13,14] solves for the
temporal correspondence between two sequences without
posture matching and 3-D motion information. Our proposed
problem involves both temporal correspondence and posture
matching, which is much more complex than the related prob-
lems. In the following, existing work in the most related area,
human posture estimation, is discussed more in detail.

The approach to human posture estimation can be roughly
divided into two categories according to whether a 3-D
human body model is pre-defined or not [15].

2.1 Approach without 3-D human body model

This approach does not use explicit human body model.
It includes three main kinds of methods: mapping function-
based methods, exemplar-based methods, and probabilistic
assemblies of parts.

Mapping function-based methods [16–25] learn a nonlin-
ear mapping function to map from image features to body
postures. Then, the trained mapping function can directly
determine the body posture from a single image. For example,
Agarwal and Triggs [16] used 100-dimensional input vector
that encodes local shapes of a human image silhouette, and
55-dimensional vector to represent 3-D full-body posture.
Given a set of labelled training examples, they used relevance
vector machine (RVM) [26] to learn a nonlinear mapping
function that consists of a set of weighted basis functions.
RVM has been extended to multivariate RVM for posture
estimation [24]. More recently, Bissacco et al. [17] used a
set of oriented Haar features to extract low-level motion and
appearance information from images, and developed a multi-
dimensional boosting regression technique to learn the map-
ping from Haar features to 3-D body postures. Urtasun and
Darrell [25] used online local Gaussian processes (GP) to

efficiently learn a multi-modal mapping from silhouette fea-
tures to 3-D body postures. Ning et al. [20] and Sminchisescu
et al. [23] used Bayesian mixture of experts (BME) to learn
the mapping. Fossati et al. [19] used Gaussian process to learn
the mapping from 2-D or 3-D parameterized trajectories of
feet or hands to 3-D posture sequences for certain types of
motions like skating and golfing.

Another example is manifold-based mapping [18,27,28].
A manifold is a topological space that is locally Euclidean.
If the input image comes from a known type of 3-D motion
model (e.g., walking), the 3-D motion model can be repre-
sented as a nonlinear manifold in a high-dimensional space.
By mapping the manifold into a lower-dimensional space
using embedding technique, and learning two nonlinear map-
pings between the embedded manifold and the visual input
(i.e., silhouette) space and 3-D body posture space, 3-D body
posture can be estimated from each input image by the two
mapping functions.

Instead of training a mapping function, exemplar-based
methods store a set of exemplar images with known 3-D pos-
tures, and estimate the posture in the input image by searching
for the exemplar that is most similar to the input image [29–
36]. Since multiple postures may have very similar images,
the methods often output multiple 3-D posture estimations
for the input image [34]. Since matching the image and each
exemplar is often computationally expensive, researchers
often save the computation time by constructing an embed-
ding [29,32,33]. The embedding techniques [37,38] map a
point in the image space into another low-dimensional space
such that the similarity measurement between images can be
efficiently computed in the embedded space. For example,
Athitsos et al. [29] used AdaBoost to construct an embed-
ding, by combining a set of 1-D embeddings that preserve
rankings of the similarities between any input image and all
exemplars in the embedded space.

Both mapping function-based and exemplar-based meth-
ods are useful only for a small set of body postures due to
the complexity of human postures. They can recover only the
body postures that are similar to those in the training images
and exemplars.

Instead of matching the exemplar images globally, the
methods of probabilistic assemblies of parts apply low-level
feature detectors to detect likely body parts, and assem-
ble them to obtain the 2-D body posture that best matches
the detected features [39–49]. Individual body parts are
detected using 2-D shape [48], SVM classifiers [49], Ada-
Boost [39,43], locally initialized appearance models [46],
and motion of Kanade-Lucas-Tomasi (KLT) features [50].
For example, Mikolajczyk et al. [44] introduced a robust
AdaBoost part detector to provide coarse 2-D localizations
of body parts in the image. Once body part candidates are
detected, body postures are assembled from the part candi-
dates by applying prior knowledge or constraints such as joint
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connectivity and length ratio between parts. Mori [45] used
superpixels as the element to represent the input image. Based
on the boundaries of superpixels and constraints between the
body parts, a rough 2-D posture configuration was obtained.
Ren et al. [47] used pairwise constraints between body parts
to assemble detected body parts into 2-D pose configura-
tions. These pairwise constraints include aspect ratio, scale,
appearance, orientation, and connectivity. Ramanan et al.
[46] learned a global body part configuration model based
on conditional random fields to simultaneously detect all
body parts. Ferrari et al. [40] detected possible part posi-
tions by ‘image parsing’ [51] and disambiguate posture esti-
mates by assuming that the appearance and position of body
parts changes smoothly between subsequent frames. Andri-
luka et al. [39] learned a probabilistic appearance model for
each body part based on Adaboost classifier’s output, and
combined such appearance models with the kinematic prior
on the whole body configuration for people detection and
posture estimation. Yao and Li [52] used context informa-
tion to obtain more accurate estimates especially when self-
occlusion appears in images. These methods can potentially
estimate 2-D body postures in cluttered scenes, but they can
only estimate postures approximately due to cluttered back-
ground and lack of constraints from structure.

2.2 Approach with 3-D human body model

This approach estimates body posture by synthesizing pos-
sible postures from a 3-D human model and matching them
to the input images. It can be divided into two main classes
of methods: continuous methods and probabilistic methods.

Continuous methods [7,53–56,11] minimize the error
between the synthesized image and the real input image
and applies continuous optimization algorithms to determine
the locally optimal solution. Many continuous optimization
algorithms can be used. For example, Bregler and Malik
[7] used Quasi-Newton method for 3-D posture estimation.
Ju et al. [55] used a gradient descent method for 2-D posture
estimation. Rehg and Kanade [56] used Levenburg–Marqu-
ardt to estimate 3-D articulated posture. Continuous methods
cannot guarantee that the solutions are globally optimal.

Probabilistic methods, which include particle filtering
(CONDENSATION), Markov Chain Monte Carlo [57], and
Belief Propagation [58–60,46,61,62], use sampling tech-
niques to estimate postures. With enough samples, these
methods can potentially obtain the globally optimal solu-
tion. The main difficulty of these methods is to search a very
high-dimensional space for the globally optimal solution. To
tackle this problem, belief propagation (BP) decomposes the
high-dimensional search problem into a set of interrelated
low-dimensional problems by iteratively estimating the pose
distribution of each body part and propagating messages to
its neighboring body parts. Hua et al. [59] applied BP to

estimate 2-D body posture without self-occlusion. Sudderth
et al. [62] used it for 3-D-articulated hand tracking from a
single video. BP method is adapted and extended in our algo-
rithm framework.

In order to obtain globally optimal solution, a strong prior
model is often used to reduce the search space for posture esti-
mation [63–66,10,8,67–70]. The prior model is often learnt
from 3-D motion data captured by a commercial system.
For example, Rutasun et al. [70] and Gupta et al. [65] used
scaled Gaussian process latent variable models (SGPLVM)
to learn a prior distribution of postures in a low-dimensional
embedding space. Li et al. [10] used locally linear coordi-
nation (LLC) to learn a set of prior posture clusters in an
embedding space. Fossati and Fua [64] obtained more accu-
rate and realistic results by forcing the facing orientation
of human body to be consistent with its motion direction.
In addition, Brubaker et al. [63] used physics-based approach
to model the dynamics of lower body parts in walking or
running motion, and Taylor et al. [71] demonstrated that a
binary latent variable model called implicit mixture of con-
ditional restricted Boltzmann machines (imCRBM) worked
effectively as a motion prior for 3-D human tracking.

3 Problem formulation

To clearly describe the problem, it is necessary to first
describe the inputs of the problem, which consist of 3-D
reference motion of the expert and 2-D input video of the
performer (Sects. 3.1 and 3.2), and the complex relationships
(Sect. 3.3) between them.

3.1 3-D reference motion

The 3-D reference motion of the expert includes:

1. Time-independent component: human body model.
The human body model consists of a hierarchical skel-
eton model of bones and joints, and a triangular mesh
model for the shapes of the body parts (Fig. 1b). The mesh
model is divided into a set of mesh parts and each mesh
part corresponds to one unique body part (Fig. 1b, c).

2. Time-dependent component: 3-D motion data.
The 3-D motion data comprise a temporal sequence of
global positions of human body in the world coordinate
system, and joint angles of the body parts. These data
define the reference posture (Fig. 4c) at time t denoted as
Bt . For any reference posture Bt , the joint angles will be
used to articulate the skeleton model, and the mesh part
associated with each body part will be rotated accord-
ingly. The sequence of Bt , t ∈ T = {0, . . . , L}, together
with the human body model, defines the 3-D reference
motion.
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Fig. 1 Human body model. a A performer’s human body image.
b Human mesh model adapted to fit shape and size of the performer’s
human body, and human skeleton model including joints (yellow dots)
and bones (white line segments). Mesh parts in different colors corre-
spond to different body parts. c Triangular mesh for the head (color
figure online)

In general, there are differences in body shape and limb
lengths between the expert and the performer. Here, we
assume that the human body model has been adapted to
fit the shape and size of the performer, and the 3-D refer-
ence motion has been retargetted to the performer’s body
before the reference motion and the performer’s motion are
compared, e.g., using the motion retargetting algorithm in
[72]. That is, the human body model (Fig. 1) is that of the
performer and the reference motion is retargetted accord-
ing to performer’s body. This is a reasonable assumption
because the shapes and sizes of the performer’s body can
be measured in advance, and retargetting needs to be per-
formed only once for a specific performer. In our applica-
tion, retargetting adapts the reference motion to the size of
the performer.

Note that the reference motion can often be divided into a
set of motion segments by a set of segment boundary frames
Tb ⊂ T . These reference segment boundaries are determined
based on domain knowledge, by which we find that some
body parts change their motion directions significantly across
segment boundaries. The body part with the most significant
change in direction across all segment boundaries is used to
analyze the property of segment boundaries (see Sect. 7.1
for more detail). Let vt denote the direction of the 3-D veloc-
ity of the body part at time t . Then, at segment boundary
t, vt · vt+1 < α, where α is a threshold that depends on the
type of motion. For example, if the direction changes at the
segment boundaries are greater than 60◦, then α can be set
cos 60◦ = 0.5.

3.2 2-D input video

The motion of a performer is captured in the input video,
which consists of a sequence of image frames I ′

t ′ (Fig. 4a)
over time t ′ = 0, . . . , L ′. Typically, L ′ < L because video
camera has a lower sampling rate than 3-D motion cap-
ture system. Each input image I ′

t ′ contains the image of a
performer generated by the projection of an unknown per-
former’s posture B ′

t ′ onto the image plane. The human body
region S′

t ′ in image I ′
t ′ is separated from the background using

interactive segmentation and skin color detection algorithms
[73,74] (Fig. 4b). Note that in a single camera view, depth
ambiguity of body parts and self-occlusion can occur.

3.3 3-D–2-D spatiotemporal relationships

There are many complex spatiotemporal relationships
between the 3-D reference motion and the 2-D input video.
Four major relationships are highlighted below.

1. Temporal difference: The performer’s motion can differ
from the expert’s motion in terms of execution speed.
So, a temporal correspondence C needs to be established
from 2-D video time t ′ to 3-D motion time t , i.e., C(t ′)
is a particular t that corresponds to t ′. C should satisfy
the temporal order constraint: for any two postures in
the performer’s motion, the two corresponding postures
in the reference motion have the same temporal order.
Without loss of generality, it is assumed that C(0) = 0
and C(L ′) = L .

2. Spatial difference: The performer’s (unknown) posture
B ′

t ′ can differ from the expert’s posture BC(t ′) at the cor-
responding time frame by a global rigid transformation
T and a joint articulation A, i.e., B ′

t ′ = At ′(Tt ′(BC(t ′))).
In the algorithm, B ′

t ′ is inferred by registering the projec-
tion P of At ′(Tt ′(BC(t ′))) to the input body region S′

t ′ in
image I ′

t ′ . Then, the posture error εt ′ is naturally captured
in At ′ and Tt ′ .

3. Smooth motion: The posture error εt ′ can be large when
the performer’s motion differs significantly from the
reference motion. Nevertheless, the rate of change of pos-
ture errors should remain small because the motion of
interest is smooth. That is, �εt ′/�t ′ is small.

4. Segment boundaries: The expert often coaches a per-
former segment by segment, and pays more attention
to the correctness of the beginning and ending postures
of each motion segment. When the performer’s postures
are correct at the boundaries, the postures inside the
segment will be more likely correct. This observation
implies that errors at the segment boundaries should carry
more importance than errors at non-segment boundaries.
Therefore, the performer’s segment boundaries should
match the reference segment boundaries.

123



3-D–2-D spatiotemporal registration for sports motion analysis

3.4 Problem statement

Now, we can formulate the problem of spatiotemporal regis-
tration for sports motion analysis as follows:

Given the reference motion {Bt } and the input motion
{S′

t ′ }, determine the temporal correspondence C , pro-
jection P , rigid transformation Tt ′ , and join articulation
At ′ that minimize the errors ES and ED:

ES = 1

L ′ + 1

∑

t ′
dS

(
P

(
At ′

(
Tt ′

(
BC(t ′)

)))
, S′

t ′
)
, (1)

ED = 1

L ′ + 1

∑

t ′
εt ′ . (2)

ES is the registration error, where dS(S, S′) is an appro-
priate difference measure. In our application, edge and
silhouette are used as the features for the difference
measure dS which is defined in terms of the amount of
overlap between S and S′ and the chamfer matching
distance between edges extracted from S and S′. The
total posture error ED is minimized to capture the idea
of computing the minimum correction required by the
performer to match the expert’s motion.

The minimization of ES and ED is subjected to the
following constraints:

A. Joint angle limit. The valid angle between two connected
body parts is physically limited to certain ranges.

B. Temporal order constraint. For any t ′1 and t ′2 such that
t ′1 < t ′2,C(t ′1) < C(t ′2).

C. Small rate of change of posture errors. For each t ′,�εt ′/
�t ′ is small.

D. Similarity of corresponding segment boundaries between
the reference and the performer’s motion. For any seg-
ment boundary frame t ′, vC(t ′) · vC(t ′+1) < τ and v′

t ′ ·
v′

t ′+1 < τ .

When both dS and εt ′ are minimized, B ′
t ′ can be recovered.

Consequently, the temporal difference is captured in C and
the performer’s posture error is measured by εt ′ .

4 Spatiotemporal registration framework

It is infeasible to directly solve the proposed problem, which
is a very complex high-dimensional optimization problem
with long-time sequence. So, it is decomposed into four sub-
problems and solved in the following stages:

1. Estimation of camera projection P .
In our application, the performer’s motion is assumed to
be recorded by a single stationary camera with camera
view fixed. The camera projection is assumed to be scaled
orthographic because the body movement in depth is in

general small compared with the distance from the body
to the camera. This stage is omitted in the remainder of
this paper in order to focus on the following main stages.

2. Estimation of approximate temporal correspondence C
and rigid transformation T .
Determine initial estimates of C and Tt ′ that minimize
the error EC subject to Constraint B:

EC = 1

L ′ + 1

L ′∑

t ′=0

dS
(
P

(
Tt ′

(
BC(t ′)

))
, S′

t ′
)
, (3)

Joint articulation At ′ is omitted in this stage.
3. Estimation of posture candidates.

Due to depth ambiguity, multiple postures can match an
input body region in the image. So, this stage determines,
for each t ′, multiple At ′l and Tt ′l that minimize the error
Et ′ subject to Constraint A:

Et ′ = dS
(
P

(
At ′l

(
Tt ′l

(
BC(t ′)

)))
, S′

t ′
)
. (4)

The approximate C estimated in the previous stage is used
to identify approximate corresponding reference posture
BC(t ′), which is transformed by At ′l and Tt ′l to match
the input body region S′

t ′ . This approach avoids the accu-
mulation of estimation error over time, which is present
in many human body tracking methods. The resulting
Bt ′ = {B ′

t ′l}, where B ′
t ′l = At ′l(Tt ′l(BC(t ′))) is the set of

posture candidates that match S′
t ′ well.

4. Candidate selection and refinement of estimates.
Select the best posture candidate B ′

t ′ from Bt ′ and deter-
mine the C that together minimize ED subject to Con-
straints B, C, and D. After finding the best B ′

t ′ , posture
error can be computed as the difference between B ′

t ′ and
the corresponding BC(t ′).

The algorithms for Stages 2, 3, and 4 are discussed in the
following sections.

5 Estimation of temporal correspondence

This stage estimates approximate temporal correspondence
C and transformation T using dynamic programming (DP).
The optimal solution at this stage is not globally optimal for
the whole problem because articulation is omitted. So, the
temporal correspondence estimated at this stage is only an
approximation.

Let d(t ′,C(t ′)) denote dS(P(Tt ′(BC(t ′))), S′
t ′). The task

is to determine C by minimizing EC :

EC = 1

L ′ + 1

L ′∑

t ′=0

d(t ′,C(t ′)) (5)
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Fig. 2 Correspondence matrix between t ′ and t . Each black dot denotes
a correspondence between t ′ and a unique t , and the solid line connect-
ing the black dots is a path in the correspondence matrix. The black
dots in a small window (green elements) connected by the thin dashed
lines denote the possible frame pairs preceding the pair (t ′, t). The thick
dashed lines (in red) denote the band in which to search for possible
correspondences (color figure online)

subject to temporal order constraint. Given a particular C, Tt ′
at each time t ′ is determined using sampling technique. The
DP problem is formulated in the following:

Let D denote a (L ′ + 1)×(L + 1) correspondence matrix.
Each matrix element at (t ′, t) represents the possible frame
correspondence between t ′ and t , and the correspondence
cost is d(t ′, t). A path in D is a sequence of frame corre-
spondences for t ′ = 0, . . . , L ′ such that each t ′ has a unique
corresponding t = C(t ′), with C(0) = 0 and C(L ′) = L
(Fig. 2). The cost of a path is the sum of the correspondence
costs over all t ′, and the average path cost is EC . The problem
is to find the least cost path on which EC is minimized.

The least cost path can be efficiently found by making
use of the temporal order constraint. Suppose the frame pair
(t ′, t) is on the least cost path. Then, the possible previ-
ous frame pair should be one of (t ′ − 1, t − 1 − i) for
i = 0, . . . , w. The temporal window size w is defined as
kL/L ′ for a small k ≥ 1. k is small because the change of
posture error between the pair of corresponding frames over
time is small (Sect. 3.3). The least cost path from the first
frame pair (0, 0) to the current pair (t ′, t) can be determined
by recursively computing the least cost path from (0, 0) to
one of (t ′ − 1, t − 1 − i), i = 0, . . . , w.

Let D(t ′, t) denote the least cost from frame pair (0, 0) up
to (t ′, t) on the least cost path, and D(0, 0) = d(0, 0). Then
D(L ′, L) can be recursively computed as follows:

D(t ′, t) = d(t ′, t)+ w

min
i=0

D(t ′ − 1, t − 1 − i) (6)

Once D(L ′, L) is computed, the least cost path is obtained
by tracing back the path from D(L ′, L) to D(0, 0). The least
cost path gives the correspondence C (Figs. 2, 5).

Our DP algorithm is similar to dynamic time warp-
ing (DTW) [75]. DTW permits one-to-many and many-to-
one mappings between t ′ and t . In addition, two adjacent

elements (t ′,C(t ′)) and (t ′ + 1,C(t ′ + 1)) on the path have
to satisfy C(t ′ + 1) − C(t ′) ≤ 1. On the other hand, in our
DP formulation, each t ′ corresponds to a unique t (i.e., one-
to-one mapping) and C(t ′ + 1)− C(t ′) ≤ w.

The computation complexity of DTW is O(L ′L), and
the complexity of our algorithm is O(wL ′L). In the imple-
mentation, to improve the efficiency of the algorithm, the
possible correspondence can be restricted within a narrow
band (Fig. 2, thick dashed lines) along the diagonal of the
correspondence matrix because the change of posture error
between the pair of corresponding frames over time is small.
The bandwidth β of the band is defined as the horizontal
distance from the straight diagonal line to the dashed line
(Fig. 2). Then the computation complexity of the algorithm
is reduced from O(wL ′L) to O(wβL ′).

6 Estimation of posture candidates

Posture candidates are estimated using an extension of BP
[59,60,46,61,62]. The algorithm uses the approximate tem-
poral correspondence C estimated in the previous stage to
identify approximate corresponding reference posture BC(t ′)
at time t ′ (Fig. 4c). Then, BP uses BC(t ′) as an initial estimate
to search for the posture candidates that match the input body
region S′

t ′ (Fig. 4b), thereby determining the candidate artic-
ulations At ′l and rigid transformations Tt ′l . In the following,
the BP is first described (Sect. 6.1). Then, the nonparamet-
ric implementation of BP (Sect. 6.2) and posture estimation
algorithm (Sect. 6.3) is developed.

6.1 Belief propagation

Let p(B ′|S′) denotes the probability that B ′ is a good posture
candidate given input body region S′. Then, posture candi-
date estimation is to find B ′ with large p(B ′|S′). Denote the
pose of body part i as bi , i.e., B ′ = {bi }. Instead of comput-
ing p(B ′|S′) directly, BP iteratively computes p(bi |S′) for
each body part i using these equations:

p(bi |S′) ∝ φ(bi , S′)
∏

j∈�(i)
m ji (bi ) (7)

m ji (bi ) ∝
∫
φ(b j , S′) ψ(b j , bi )

∏

k∈�( j)\i

mk j (b j ) db j (8)

where �(i) is the set of body parts connected to body part i ,
and m ji (bi ) is the contribution of body part j to the pose bi of
body part i . To compute m ji (bi ) and p(bi |S′), the functions
φ(bi , S′) and ψ(bi , b j ) need to be defined.

The similarity function φ(bi , S′) measures the degree of
match between S′ and body part i at pose bi . Each body
part at pose bi computed in the current iteration is projected
and rendered, together with all other body parts whose poses
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Fig. 3 Joint constraint. The
two ends of the connected body
parts should be at the same 3-D
position, i.e., xi = x j

jxixi

j

are obtained in the previous iteration, to produce the pro-
jected body region S. Then, the similarity is computed as
φ(bi , S′) = exp (−dS(S, S′)). dS(S, S′) is defined as above
and allows the algorithm to handle partial self-occlusion of
body parts. In comparison, the original BP [62] measures
similarity using only region overlap between the projection
of a single body part and the entire input body region. There-
fore, it cannot handle partial self-occlusion of body parts.

The joint constraint functionψ(bi , b j ) enforces joint con-
straint and joint angle constraint between two connected body
parts i and j . The joint constraint states that two neighboring
body parts should be connected at the joint (Fig. 3). Let xi

and x j denote the 3-D positions of the points on body parts
i and j that connect to form a joint. When body parts i and
j adopt poses bi and b j , the degree of satisfaction of joint
constraint is measured by exp(−‖xi − x j‖2/σ 2), where σ is
a positive parameter.

The joint angle constraint ensures that the angle between
two connected body parts i and j falls within physical limit.
The degree of satisfaction of joint angle constraint is mea-
sured by J (bi , b j ), which is 1 when the joint angle is within
limit, and a smaller constant a otherwise. Combining the two
constraints, we obtain ψ(bi , b j ) = J (bi , b j ) exp(−‖xi −
x j‖2/σ 2).

The parameters σ and a decrease over iteration. At the first
few iterations, the pose estimate of each body part may be far
from the actual pose. So, the constraints are loosely enforced
initially to ensure that the correct poses can be included.
Gradually, the pose estimate of each body part is expected
to become more similar to the actual pose, and therefore the
constraints should become more strict.

6.2 Nonparametric implementation of belief propagation

In practice, the evaluation of the BP integral in Eq. 8 is often
intractable with continuous state variable bi . Several imple-
mentations of BP using nonparametric sampling approach
have been proposed [61,60,59]. In this paper, an algorithm
similar to BP Monte Carlo [59] is adopted to compute
m ji (bi ).

In the algorithm, the possible pose bi of body part i is
represented by a discrete set of samples silk , where l denotes
the lth sample of the set and k denotes the iteration number
of the algorithm. The contribution m ji (bi ) in the kth itera-
tion is represented by the set {(silk, ω j ilk)}, where ω j ilk is
the weight of the contribution from body part j to body part
i . The belief p(bi |S′) in the kth iteration is represented by
the set {(silk, πilk)}, where πilk is the weight of the belief
of body part i . The algorithm iteratively updates the pose

of each body part to match the input body region S′ in four
steps:
Step 1: Decrease parameters
σ and a are gradually decreased over iterations by σk =
λσk−1 and ak = {ak−1}1/λ, where λ is a decreasing factor
from 1 to 0. The parameters a is set to decrease at expo-
nential rate of 1/λ so as to match the influence of σ , which
exists in the exponent of the exponential function. A larger λ
(e.g., 0.95) can make the beliefs converge to the global opti-
mal estimates with a higher probability. On the other hand,
a lower λ (e.g., 0.60) can make the beliefs converge faster,
but the beliefs may converge to local optimal estimates with
a higher probability. This step is used to harden the joint
constraint (Sect. 6.1) to make the beliefs and contributions
gradually converge over iterations. Note that there is no such
constraint-hardening schedule in [59].
Step 2: Generate new samples
Generate samples silk for body part i according to its belief
in iteration k and the beliefs of its connected body parts in
iteration k − 1. The sampling technique consists of three
steps:

1. Sample from the nonparametric distributions of belief of
body part i and the beliefs of the connected body parts in
iteration k − 1.

2. For each selected sample, construct a Gaussian function
to generate a sample for body part i .

3. Draw a sample from each Gaussian function randomly.

Step 3: Compute the weights of contribution
For each new sample silk , compute the weight ω j ilk by the
nonparametric version of Eq. 8:

ω j ilk =
∑

l ′=1

φ
(
s jl ′,k−1, S′)ψ

(
s jl ′,k−1, silk

)

×
∏

h∈�( j)\i

ωh jl ′,k−1. (9)

Step 4: Compute the weights of belief
For each new sample silk , compute the weight πilk by the
nonparametric version of Eq. 7:

πilk = φ(silk, S′)
∏

j∈�(i)
ω j ilk . (10)

The weights πilk are then normalized such that the sum of
them for each body part i is 1:
∑

l

πilk = 1. (11)

The iteration process stops when p(bi |S′) for all i converge
or after a fixed number of iterations. The samples with larger
weights are the pose estimates of body part i .

In the algorithm, most time is spent on computing the
similarity functions φ(bi , S′). Suppose the number of body
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Fig. 4 Estimation of posture candidates. a Input image. b Input body
regions. c Approximate corresponding reference posture. d, e The pro-
jections of pose samples of each body part after the 1st and 30th

iterations. f Posture candidate overlapped onto input image. g, h Fron-
tal and side views of all posture candidates. Different pose samples and
posture candidates are colored with different colors (color figure online)

parts is Ni , the number of samples for each body part is Nl ,
and the number of iterations is Nk . Then, the computation
complexity of the algorithm is O(Ni Nl Nk).

Note that if a body part is totally occluded, the belief of
the part will be influenced by several factors: the beliefs
of connected body parts, the corresponding reference pos-
ture, and the posture candidate estimated in the previous
frame. If the neighboring body parts are close to the ground
truth, the joint constraints between the neighboring parts and
the current part will generate pose samples of the current
body part that are close to the ground truth. Similarly, if
the corresponding reference posture and the posture candi-
dates in the previous frame are similar to the performer’s
posture in the current frame, the pose samples of the cur-
rent body part will be close to its true belief. Otherwise,
the pose estimate may be quite different from the ground
truth.

6.3 Posture candidate estimation algorithm

The BP algorithm described earlier estimates only the pose
samples of each body part (Fig. 4d, e). These pose sam-
ples are used to generate posture candidates as follows. The
first posture candidate is computed such that each body part
has the same depth orientation as that in the correspond-
ing reference posture, and its projection matches the mean
of its pose samples (Fig. 4f). Then, based on the first pos-
ture candidate, flip the depth orientation of n body parts
about their parent joints, starting with n = 1, while keeping
the body parts connected at the joints. This step is repeated
for n = 1, 2, . . . , until enough (experimentally 20 to 50)
posture candidates are generated. These posture candidates
have exactly the same frontal projection (Fig. 4g), but dif-
ferent side projections (Fig. 4h). Therefore, they capture all
possible depth ambiguities in the image of a single camera
view.

7 Refinement of estimates

This stage selects the best posture candidate at each t ′ that
minimize the error ED (Eq. 2), and simultaneously refines the
temporal correspondence C , subject to Constraints B, C, and
D. To satisfy the segment boundary constraint (Constraint D),∑

t ′ εt ′ needs to be minimized within each motion segment.
Therefore, it is necessary to identify the performer’s segment
boundaries in the performer’s motion given the reference
segment boundaries in the reference motion.

7.1 Determination of performer’s segment boundaries

Given the set Tb of reference segment boundaries that are
known in advance, the approximate temporal correspondence
C , and the posture candidates B ′

t ′l ′ at each t ′, the objective
is to to determine the performer’s segment boundaries in the
performer’s motion.

For each reference segment boundary t ∈ Tb, the cor-
responding performer’s segment boundary is determined by
the following steps:

1. Obtain a temporal window [t ′ − ω, t ′ + ω], where ω is
the window size, and t ′ is the initial estimate of the per-
former’s segment boundary determined by C(t ′) = t .

2. Find one or more smooth sequences of posture candidates
in the temporal window.

• Correct posture candidates should change smoothly
over time. Suppose B ′

τ l ′ and B ′
τ+1,k′ are correct pos-

ture candidates, then dB(B ′
τ l ′, B ′

τ+1,k′) is small for
any τ ∈ [t ′ − ω, t ′ + ω].

• Choose a posture candidate for each τ ∈ [t ′ −ω, t ′ +
ω] to obtain a sequence of posture candidates that sat-
isfy the condition that dB(B ′

τ l ′ , B ′
τ+1,k′) is small for

each τ .
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3. Find candidate segment boundaries.

• For each smooth sequence of posture candidates, find
the candidate segment boundary τ ∈ [t ′ − ω, t ′ + ω]
and the corresponding posture candidate at τ that sat-
isfies the segment boundary condition (Sect. 3.4).

• Denote a candidate segment boundary found above
as τi and the corresponding posture candidate as B ′

i .

4. Identify the optimal segment boundary τ ∗.
The posture candidate at the optimal segment boundary
τ ∗ should be the most similar to the corresponding ref-
erence posture Bt . Therefore, τ ∗ can be determined as
follows:

τ ∗ = τk , k = arg min
i

dB(Bt , B ′
i ). (12)

7.2 Refinement of estimates within each motion segment

After determining the performer’s segment boundaries, a
posture candidate has to be selected at each t ′ within each
motion segment to determine the optimal C and compute
the posture errors. Let [tb, te] denotes a reference motion
segment and [t ′b, t ′e] denotes the corresponding performer’s
motion segment. Let �(t ′) denotes the index of the best pos-
ture candidate at t ′ within the motion segment [t ′b, t ′e]. Then,
the problem is to determine the � and C that minimize ED

subject to Constraints B and C. Constraint C, i.e., small rate
of change of posture errors, can be incorporated into ED to
obtain EF :

EF = 1

t ′e − t ′b + 1

t ′e∑

t ′=t ′b

[dc(t
′,C(t ′), �(t ′))

+ λ ds(t
′,C(t ′),C(t ′ − 1), �(t ′), �(t ′ − 1))], (13)

where λ is a weighting factor. The difference dc is obtained
from ED , i.e., dc(t ′, t, l ′) = εt ′ = dB(Bt , B ′

t ′l ′). dB is the
posture error between the posture candidate B ′

t ′l ′ and the
reference posture Bt , which is defined as the mean orien-
tation difference of all body parts in the postures. The differ-
ence ds(t ′, t, s, l ′, k′) measures the change of posture errors
between two pairs of corresponding postures (B ′

t ′l ′ , Bt ) and
(B ′

t ′−1,k′ , Bs):

ds(t
′, t, s, l ′, k′)=

[
dB(Bt , B ′

t ′l ′)−dB(Bs, B ′
t ′−1,k′)

]2
. (14)

DP technique similar to that in Sect. 5 is developed to
determine the optimal �(t ′) and C(t ′). In this case, the cor-
respondence matrix D is a (t ′e − t ′b + 1)×(te − tb + 1)×NB

matrix, where NB is the maximum number of posture candi-
dates at each t ′. Each matrix element at (t ′, t, l ′) represents
the possible correspondence between posture candidate B ′

t ′l ′
and reference posture Bt . The correspondence cost consists
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Fig. 5 Approximate and refined temporal correspondence C

of two terms: dc(t ′, t, l ′) and ds(t ′, t, s, l ′, k′). A path in D is
a sequence of correspondences for t ′ = t ′b, . . . , t ′e such that
each t ′ has a unique corresponding t = C(t ′) and l ′ = �(t ′).
The cost of a path is the sum of the correspondence costs
over all t ′, and the average path cost is EF . The problem is
to find the least cost path on which EF is minimized.

Let D(t ′, t, l ′) denotes the least cost from the triplet
(t ′b, tb, l ′b) up to (t ′, t, l ′) on the least cost path, and therefore
D(t ′b, tb, l ′b) is dc(t ′b, tb, l ′b). Then, by a similar reasoning as
in Sect. 5, D(t ′e, te, �(t ′e)) can be computed recursively using
the formulae

D(t ′, t, �(t ′)) = min
l ′

D(t ′, t, l ′) (15)

�(t ′) = arg min
l ′

D(t ′, t, l ′) (16)

D(t ′, t, l ′) = dc(t
′, t, l ′)+ min

i,k′ {D(t ′ − 1, t − 1 − i, k′)

+ ds(t
′, t, t − 1 − i, l ′, k′)}. (17)

Once D(t ′e, te, �(t ′e)) is computed, the least cost path can
be obtained by tracing back the path from D(t ′e, te, �(t ′e)) to
D(t ′b, tb, �(t ′b)). Test result in Fig. 5 shows that the refined
optimal C is not a linear function.

8 Experiments and discussions

We split the test into two phases. First, synthetic data were
mainly used to assess the accuracy of the posture candidate
estimation algorithm. The test results gave an estimate of the
algorithmic error in estimating the performer’s actual 3-D
postures from 2-D input images. Next, the whole spatio-
temporal registration algorithm was tested on real data to
measure the performer’s posture error. As long as the mea-
sured error is significantly greater than the algorithmic error,
we are confident that the measured error reliably reflects the
actual posture error of the performer. Two sets of motion
sequences were mainly used for the tests: (1) 3-D Taichi
reference motion with 2,250 reference postures captured by
a commercial motion capture system, and input video with
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Fig. 6 Approximate temporal correspondence. a The optimal approx-
imate C shown as the yellow dots along the diagonal. b Approximate C
with k = 10 and β/L = 20%, which is almost as same as the optimal
C in (a) (color figure online)

339 input images of size 320 × 240, and (2) 3-D golf swing
motion with 250 reference postures and input video with 51
input images.

8.1 Estimation of approximate temporal correspondence

This test evaluates the performance of the algorithm for esti-
mating the approximate temporal correspondence. An input
video consisting of 399 images was used to determine the
window size parameter k and bandwidth β. Figure 6a illus-
trates a visualization of the correspondence matrix and the
optimal approximate temporal correspondence with the max-
imum normalized bandwidth β/L = 100% and w = L . The
intensity of pixel (t, t ′) represents the difference d(t ′, t). So,
a darker pixel represents smaller difference. Note that the
pixel (0, 0) is located at the bottom-left, and the original
d(t ′, t) value is scaled to intensity value between 0 and 255.

From tests, we found that the optimal solution of the
approximate temporal correspondence can be obtained for
window size k ∈ [10, L ′] and bandwidth β/L ∈ [20%,
100%]. That means, a small window size and bandwidth are
enough for finding the optimal solution. By setting k = 10
and β/L = 20%, the least cost path in Fig. 6b is almost
as same as the optimal solution. At these settings, 60%
of the computation time is saved compared with searching
the correspondence matrix with window size k = 10 and
β/L = 100%. Figure 7 illustrates several pairs of input
images and their corresponding reference postures obtained
based on the approximate temporal correspondence. We can
see that the corresponding reference postures are indeed sim-
ilar to the performer’s postures in the input images.

8.2 Accuracy of posture error estimation

In this test, synthetic test data were generated as follows.
One hundred and ten reference postures were selected at reg-
ular intervals from the 3-D Taichi sequence. Each selected
3-D posture was mapped to an articulated 3-D human model,
which was projected by scaled orthographic projection and
rendered using OpenGL to obtain a synthetic input image.

Fig. 7 Examples of input images (first row) and their corresponding
reference postures (second row)

The 3-D reference posture served as the ground truth of the
input image. Next, the joint angles of the ground truth posture
were changed by random values in the range [−20◦,+20◦]
to generate a new posture to serve as the initial posture for
the posture candidate estimation algorithm. This approach
was adopted to emulate the real application situation that
the actual performer’s posture may differ from the initial
posture estimate. Note that some of the synthetic input images
generated contained self-occlusion and depth ambiguity. In
the experiments, the decreasing factor λ was set to 0.9, and
the number of iterations was set to 40. In each iteration of the
algorithm, 300 pose samples were generated for each body
part. About 8 s were spent for each iteration, most of which
were used to compute the similarity function.

Figure 8 illustrates a sample test result. Given the input
image (Fig. 8b) and the initial posture (Fig. 8c) generated by
articulating the ground truth 3-D reference posture (Fig. 8a),
multiple posture candidates were estimated by the posture
estimation algorithm. All posture candidates had the same
projections from the frontal view (Fig. 8d), but they differed
in depth orientations for some body parts, as revealed in the
side views (Fig. 8e). Figure 8f illustrates the side view of the
best posture candidate in the candidate set. From Fig. 8f and
d, we can see that the best posture candidate is very similar
to the ground truth (Fig. 8a).

For the sample input image (Fig. 8b) and the initial pos-
ture (Fig. 8c), Fig. 9 shows the decreasing trend of 2-D joint
position error E2P with respect to the iteration number of
the BP algorithm, where E2P is the mean error of all body
joints’ image positions projected by the posture candidates
with respect to the ground truth. The error decreases to a
small value of about 1 pixel after 35 iterations, which indi-
cates that the posture estimation algorithm converges after
35 iterations. A 2-D joint position error of 1 pixel is the best
that can be achieved without using sub-pixel algorithm.

Among the posture candidates (Fig. 8d, e), there is one
best candidate (Fig. 8e) that is most similar to the ground
truth. For the algorithm to be accurate, the posture error
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Fig. 8 Posture candidate estimation from a synthetic input image.
a Ground truth 3-D posture. b Synthetic input image. c Initial pos-
ture. d, e Posture candidates viewed from the front and the side. f Best
posture candidate viewed from the side

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

Iteration number

2D
 jo

in
t p

os
iti

on
 e

rr
or

 (
pi

xe
l)

Fig. 9 2-D joint position error E2P with respect to iteration number

between the best candidate and the ground truth should be
small. Figure 10 illustrates the posture errors of the pos-
ture candidates that best match the ground truth postures for
all input images. It shows that the algorithmic error ranges
from 2◦ to 15◦, with a mean of 7◦ and a standard devi-
ation of 2.6◦. The larger errors occur in the input images
with total occlusion of some body parts. For the other input
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Fig. 10 Algorithmic error in estimating performer’s posture

images, the errors are mainly due to depth ambiguity of
body parts. In our test, a body part of length 30 cm par-
allel to the image plane measures about 36 pixels in the
image, and the length of the body part in the image changes
by only one pixel when the body part is rotated by 14◦
in depth. Therefore, a mean error of 7◦ is reasonable and
acceptable for an algorithm that uses a single camera view.
The accuracy can be further improved using images with
larger resolution or sub-pixel algorithm, which will take more
time.

Figure 11 shows sample test results for the synthetic
images. From the second row, we can see that all estimated
posture candidates are aligned when viewed from the front.
That is, their projections match the input image equally well.
However, due to depth ambiguity, these posture candidates
are not the same, as revealed in their side views (third row).
From the fourth row, we can see that the best posture can-
didate for each input image corresponds to the ground truth
posture in the sense that the depth orientation of each body
part in the best candidate is as same as that in the ground
truth.

Table 1 shows a comparison with a state-of-art 2-D posture
estimation method [76] (‘YR’ in Table 1) based on the real
Taichi video. One hundred and thirteen input images were
regularly sampled from the video, and the ground truth
2-D position of each body joint was manually annotated
for each sampled image. For the YR method [76], the full-
body model was trained on the Image Parse dataset [51] and
then applied to estimate 2-D positions of each joint over
all the sampled images. Note that the proposed method in
this paper relies on background subtraction, while the YR
method estimates 2-D postures in the whole image regions.
To make a relatively fair comparison, only the correctly
located joints by the YR method were used to compute the
2-D position errors, where a joint is considered correctly
localized if the joint estimate is within 50% of the ground
truth length of the related body part from its true position
(as in [76]). In this case, the proposed method gave either
significantly better or comparable estimates (Table 1) for all
body joints.
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Fig. 11 Estimation of posture candidates from synthetic images. First
row displays input images. Second to third rows displays the frontal and
side views of all posture candidates for each input image. Every candi-
date has a unique color. Fourth row displays the best posture candidates
viewed from the side (color figure online)

8.3 Estimation of performer’s segment boundaries

In this test, the performance of the algorithm for estimating
the performer’s segment boundaries was evaluated. First, 25
posture candidates were estimated by running the algorithms
in the previous stages (Sect. 6). Then, the performer’s seg-
ment boundaries were estimated by the segment boundary
estimation algorithm. At the reference segment boundaries
(RSB, second row in Table 2), there is always a large direction
change for the right wrist by at least 60◦ (Fig. 12). Therefore,
the right wrist was used as the joint that indicates segment
boundary and the direction change threshold was set at 60◦
for the Taichi motion. For golf swing motion, the threshold
was found to be 120◦.

Table 2 Segment boundaries of Taichi sequence

SB B1 B2 B3 B4 B5 B6 B7

RSB 0 215 570 972 1,535 1,733 2,249

PSBG 0 60 91 145 227 262 338

PSBI 0 16 85 134 233 265 338

PSBF1 0 60 90 143 228 261 338

PSBF2

Actual 0 29 46 70 114 131 169

Up-scaled 0 58 92 140 228 262 338

0 500 1000 1500 2000
0

30

60

90

120

150

180
Left wrist
Right wrist

Frame number
A

ng
le

 (
de

gr
ee

)

Fig. 12 The change of motion direction for the left wrist and the right
wrist joints in the Taichi reference motion. Not all frames with large
direction change correspond to the reference boundaries because the
hands can change motion directions more than once in a motion segment

Table 2 illustrates the test results. From the fourth row,
we can see that the initial estimates (PSBI) are very differ-
ent from the ground truth performer’s segment boundaries
(PSBG) because the temporal correspondence determined
at Stage 2 is only an approximate that does not take into
account articulation of body parts. In comparison, the final
estimates of the performer’s segment boundaries (PSBF1,
fifth row) differ from the ground truth (third row) by at most
two frames, which is reasonably small in an input video of
339 frames. When the input video has a higher frame rate
(50 fps), the estimates of the performer’s segment bound-
aries (last row) are also very close to the ground truth, which
indicates that the algorithm is robust. The frame numbers of
the performer’s segment boundaries for 50 fps input video
are up-scaled for ease of comparison with the ground truth.

Figure 13 visually shows some of the boundary estima-
tion results. From the results, we can see that the performer’s
postures in all displayed input images are similar to the

Table 1 2-D position errors (pixels) for different joints: average errors and standard deviations (in brackets)

Method RA RK RH LH LK LA RW RE RS LS LE LW

Our method 2.0 (1.3) 5.3 (2.8) 3.1 (1.6) 4.3 (2.8) 6.1 (3.6) 3.1 (1.9) 4.6 (3.2) 4.5 (3.9) 4.8 (3.8) 4.4 (2.2) 2.7 (1.5) 2.8 (1.9)

YR [76] 5.6 (3.1) 5.3 (3.4) 11.7 (3.6) 10.6 (4.4) 5.2 (3.0) 6.1 (3.0) 6.1 (2.8) 5.6 (2.7) 5.2 (2.5) 4.9 (2.1) 4.9 (2.8) 7.1 (3.4)

R right, L left, A ankle, K knee, H hip, W wrist, E elbow, S shoulder
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Fig. 13 Visual illustrations of segment boundaries. First row displays
reference postures at the reference segment boundaries. Second to fourth
rows displays the input images of the ground truth, the initial estimates,
and the final estimates at the performer’s segment boundaries

corresponding reference postures. It indicates that the per-
former’s segment boundaries cannot be accurately estimated
only by the similarity between the input body regions and the
projected body region at the reference segment boundaries.
This also explains why the initial estimates are not accurate
because the approximate temporal correspondence is deter-
mined without taking into account articulation of body parts.
In contrast, the segment boundary estimation algorithm accu-
rately estimates the performer’s segment boundaries by using
the segment boundary properties (Sect. 3.3).

8.4 Reliability of posture error estimation

In this test, the spatiotemporal registration algorithm was exe-
cuted on the Taichi sequence and the golf sequence. Then,
the posture error between the selected best posture candidate
and the corresponding reference posture was computed for
each input image in the motion sequences.
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Fig. 14 Computed posture error for Taichi motion. Solid curve indi-
cates computed posture error. Dotted curve indicates computed posture
error in the inverse time order. Solid line indicates algorithmic error in
estimating postures in synthetic data. Dashed line indicates expected
algorithmic error

Figure 14 illustrates the computed errors for the Taichi
sequence. As discussed in the previous section, the algorithm
has a mean error of 7◦ (solid line in Fig. 14) in estimating
postures in synthetic data. For real images, this algorithmic
error is expected to be larger, say the mean error plus the
standard deviation (dashed line in Fig. 14). The computed
error includes both algorithmic error and performer’s actual
posture error. Since the algorithmic error is small compared
with the computed error, there is high confidence that the
computed error indeed reflects the performer’s error. In addi-
tion, in order to testify that the algorithm can avoid the accu-
mulation of estimation error over time, posture candidates
are estimated in the reverse time order, i.e., starting from the
last frame and ending to the first frame. In this case, the cor-
responding posture errors (dotted curve in Fig. 14) are shown
to have similar error compared with the solid curve, which
indicates that there is no accumulation error in the algorithm.

Figure 14 also shows that the computed posture errors are
relatively small in most of the first 100 frames compared
with the later frames. This is reasonable because the per-
former started from a standard standing posture which was
easy to perform correctly. As the performer moved on to the
more difficult postures, more error were made.

Figure 15 shows sample results of the Taichi sequence
with small posture errors. The selected posture candidates are
similar to the corresponding reference postures. The depth
orientations of the body parts in the selected posture can-
didates are as same as those in the performer’s postures in
the input images. These results qualitatively verifies that the
algorithm can select the best posture candidates.

Figure 16 shows sample results of the Taichi sequence
with larger posture errors. Comparing the best posture can-
didates selected by the algorithm (blue) with the correspond-
ing reference postures (green), there are large errors in the
poses of the performer’s arms. It shows that the algorithm
can indeed identify errors in the performer’s postures.

Figure 17 illustrates posture error results for the golf swing
motion. Similar to the Taichi case, the performer made less
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Fig. 15 Sample postures in Taichi sequence with small errors. First
row displays input images with the selected posture candidates over-
laid. Second and third rows displays selected posture candidates (blue
skeleton) overlapped with the corresponding reference postures (green
skeleton) in the frontal and oblique views (color figure online)

Fig. 16 Sample postures in Taichi sequence with larger errors

error at the beginning of the swing and larger error later on
in the swing. This is visually confirmed by the sample results
illustrated in Fig. 18. The depth orientations of body parts in
the selected posture candidates are as same as those in the
performer’s posture in the input images. These results verify
that the algorithm can be applied to the analysis of different
types of sports motion.
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Fig. 17 Computed posture error for golf swing

Fig. 18 Sample postures in golf swing sequence

8.5 Robustness of posture error estimation

Figure 19 shows sample test results of the Taichi sequence
under ambiguous conditions. Depth ambiguity exists in all
images and self-occlusion of the right arm exists in the last
three images. Nevertheless, the algorithm can still infer the
pose of the occluded body part when the performer’s posture
does not differ greatly from the reference posture. That is, the
algorithm is robust against depth ambiguity and self-occlu-
sion. Of course, when the pose of the totally occluded body
part differs significantly from that in the reference posture,
no information will exist in a single camera view for the
algorithm to infer the actual pose.

9 Conclusions

This paper proposes a novel and fundamental problem for
sports motion analysis: 3-D–2-D spatiotemporal motion
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Fig. 19 Selected best postures under ambiguous conditions. row 3
The first two images show the side views of selected posture candi-
dates, and the last three show the frontal oblique views. Each bone is
marked with a unique color for easy identification (color figure online)

registration. Since it is infeasible to directly solve such a com-
plex problem, this paper presents a framework that decom-
poses the problem into four subproblems, which are solved
in stages. By using reference postures as initial postures to
estimate possible posture candidates in the input images, the
algorithm avoids the accumulation of estimation error over
time. Moreover, the algorithm seeks to compute the small-
est amount of correction required by the performer to match
the reference motion. Comprehensive tests were performed
to evaluate the performance of the algorithms. Test results
show that the computed errors are significantly larger than the
expected algorithmic errors when performer’s errors occur.
This indicates that there is high confidence that the computed
errors indeed reflect the performer’s errors. In addition, the
algorithm can handle depth ambiguity and partial self-occlu-
sion of body parts. In the case of total self-occlusion, the
algorithm can infer the pose of the occluded body part if the
performer’s posture does not differ greatly from the reference
posture. The algorithm can also be applied to analyze differ-
ent types of sports motion, which has been demonstrated
using Taichi and golf swing motion. As part of future work,
more types of sport motion can be used to test the perfor-
mance of the proposed framework and algorithms.

10 Limitations and future work

The algorithm works under certain reasonable assumptions.
It assumes that the user performs the same type of sport

motion as the expert, and therefore the performer’s motion
is more or less similar to the expert’s reference motion. The
human body model is assumed to be that of the performer and
the reference motion is retargetted according to performer’s
body. It also assumes that the performer’s motion is recorded
by a single stationary camera with camera view fixed. The
camera projection is assumed to be scaled orthographic
because the body movement in depth is small compared with
the distance from the body to the camera in our applica-
tion. Perspective camera model can be used to improve the
accuracy of camera projection. Furthermore, the background
is assumed to be static and different from the foreground
(i.e., human body region) in color in order robustly segment
out the human body region from each image. Images with
dynamic or cluttered background will make the foreground–
background segmentation difficult.

Besides the above assumptions, the limitations and possi-
ble solutions of the motion analysis framework are described
in the following. The implementation of the possible solu-
tions are considered to be part of future work.

First, the current implementation of the framework works
only when the input video and the reference motion begin
and end at the corresponding frames, i.e., C(0) = 0 and
C(L ′) = L . When this condition is not satisfied, dynamic
programming can be applied in Stage 2 to determine the best
temporal correspondence within a window in the reference
motion for the beginning and the end of the input video.

Second, when some body parts are totally occluded in
the input images, their poses are unknown and the estimated
pose samples may be quite far from the ground truth. This
problem can be controlled by checking whether a body part is
occluded when it is projected to 2-D image plane during pose
estimation. If it is occluded, the pose sample can be replaced
by the one in the reference posture such that the projected
2-D joint position error will not be arbitrarily large. Multiple
cameras can also be used to efficiently resolve the occlusion
problem by recording the performer’s motion from multiple
views.

Third, in practise, the user may forget to perform a motion
segment or repeat some motion segments incorrectly. In this
case, to obtain an optimal temporal correspondence between
the performer’s motion and the reference motion, the miss-
ing or extraneous motion segments should be determined.
One possible way for determining such segments is to find
all segment boundary candidates in the performer’s motion,
and then use dynamic programming to determine the correct
correspondence between the performer’s segment boundary
candidates and the reference segment boundaries.

When the performer’s posture is very different from the
corresponding reference posture, the reference posture can-
not provide a good initial estimate for posture estimation.
In this case, the estimated posture candidates in the previ-
ous frame can be used as the initial estimates, or the belief
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propagation method can be replaced by, e.g., mapping func-
tion-based methods which require no initial estimates.

In addition, the computed posture error can be mapped to
domain-specific error based on the domain knowledge so that
feedback to the performer is more useful and direct in improv-
ing his motion. For example, the torso should be upright in
most Taichi postures. So, a small error in torso orientation is
considered as a major error by the domain-specific criteria.
On the other hand, some posture errors are not important for
computing the domain-specific error. For example, in Taichi,
the knee’s joint angle is allowed to vary according to whether
the performer is practicing “high stance” or “low stance”.

All future works would make the system more feasible for
real practical applications.
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