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Abstract. We propose a novel, multi-task, fully convolutional network
(FCN) architecture for automatic segmentation of brain tumour. This
network extracts multi-level contextual information by concatenating
hierarchical feature representations extracted from multimodal MR im-
ages along with their symmetric-difference images. It achieves improved
segmentation performance by incorporating different segmentation tasks
directly into the loss function. The model was evaluated on BRATS13
and BRATS15 datasets where the proposed multi-task FCN outperforms
single-task FCN in all sub-tasks. The method is among the most accurate
available and has relatively low computational cost at test time.
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1 Introduction

Precise localization of brain tumours in 3D MR images of patients is clinically
crucial to make treatment plans, guide surgery and monitor the rehabilitation
progress of patients. Any unreliable segmentation might cause irreversible impact
(e.g., the difficulty in speaking fluently) from surgery. Since manually segmenting
brain tumour particularly in 3D MR images is a tedious and time-consuming
process, computer-aided automatic and reliable segmentation of brain tumour is
necessary and would save much of clinician’s valuable time.

Among brain tumors, gliomas appear most frequent [1] in adult patients,
either at high grade (HG) or low grade (LG) according to the aggressive form of
the disease. Due to the diversity and variation of tumour size, shape, location,
and appearance of gliomas, multimodal MRs are often taken from patients to
enhance the contrast of potential tumor and its structures. Figure 1 shows a rep-
resentative HG gliomas tumor and its sub-regions whose boundaries have been
delineated by experts. Normally the tumore region could be divided into four
different sub-regions or structures: edema (green), necrosis (red), non-enhancing
(blue) and enhancing (yellow), where the combination of the last three structures
is also called tumor core.

The automatic segmentation of gliomas and its sub-structures is often formu-
lated as a patch-level or voxel-level classification problem, where each (either 2D
or 3D) patch or voxel in the 3D MR is classified as one type of the sub-structures,
and the collection of all patches’ or voxels’ classification would generate the final
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Fig. 1: An HG tumor. Left to right: Flair, T1, T1c, T2 and expert delineation;
edema (green), necrosis (red), non-enhancing (blue), enhancing (yellow).

and whole segmentation of gliomas and its sub-structures. While hand-crafted
features and conditional random field (CRF) incorporating class-label smooth-
ness terms have been adopted for the voxel-level classification [1, 2], deep convo-
lutional neural networks (CNNs), which have achieved substantial performance
breakthroughs in several natural and medical image analysis benchmarks by
automatically learning high-level discriminative feature representations, are not
suprissingly achieving state-of-the-art results when applied to MRI brain tumor
segmentation [3–5]. Specifically, Pereira et al [3] trained a traditional 2D CNN as
a patch-level classifier, and Havaei et al [4] trained a 2D CNN to classify larger
patches in a cascaded structure in order to capture both small and large-scale
contextual information. Very recently, Kamnitsas et al [5] trained a 3D CNN
directly on 3D instead of 2D patches and considered global contextual features
via down-sampling. Note that all these methods are patch-level classification.

Different from traditional CNN models, fully convolutional networks (FCNs)
were recently proposed by removing all the fully connected layers which often
appear at the last several layers in CNNs, and have achieved promising results for
natural image segmentation [10, 11] as well as medical image segmentation [12–
14]. In FCNs, up-sampling (de-)convolutional layers are added on top of the
traditional down-sampling convolutional layers, in order to gain the same spatial
size at the network output as that of the original input. Compared to CNNs run
on each sliding window of the input, FCNs run only once on the whole input
and would generate the classification result for each voxel (or pixel). Therefore,
FCNs as voxel-level classifiers are more computationally efficient than traditional
CNNs as patch-level classifiers.

In this paper, we propose an new, tree-structured, multi-task FCN model for
brain tumour segmentation. The main contributions of our work are: 1) to our
best knowledge, we are the first to formulate and apply a tree-structured, multi-
task FCN to multimodal brain tumour (and sub-structure) segmentation, which
implicitly encodes the topology information of tumour subregion structures; 2)
the tree-structured, multi-task FCN improves segmentation performance in all
sub-tasks compared to single-task FC in both BRATS13 and BRATS15 datasets;
4) our model is ranked top on BRATS 2013 testing set, and more efficient than
the other competitors.
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Fig. 2: Variant of FCN. Images and symmetry maps are concatenated as the
input to the net [8]. Colored rectangles represent feature maps with numbers
nearby being the number of feature maps. Best viewed in color.

2 Methodology

2.1 Variant of FCN

Our FCN variant includes a down-sampling path and three up-sampling paths
(Fig. 2). The down-sampling path consists of three convolutional blocks sepa-
rated by max pooling (see yellow arrows in Fig. 2). Each block includes 2∼3 con-
volutional layers as in the well-known VGG-16 network [7]. This down-sampling
path extracts features ranging from small-scale low-level texture to larger-scale,
higher-level features. For the three up-sampling paths, the FCN variant first up-
samples the feature maps from the last convolutional layer of each convolutional
block such that each up-sampled feature map (purple rectangles in Fig. 2) has
the same spatial size as the input to the FCN. Then one convolutional layer is
added to each up-sampling path to encode features at different scales. The out-
put feature maps of the convolutional layer along the three up-sampling paths
are concatenated before being fed to the final classification layer. We used ReLU
activation functions and batch normalization after each convolutional layer. This
FCN variant has been experimentally evaluated in a separate study [8].

2.2 Multi-task FCN

The above FCN can already produce good probability maps of tumor tissues.
However, this FCN model predicts the class label for each pixel independently
without encoding any high-order contextual information. In brain tumour con-
text, we observe a topology in tumour structure: e.g., the complete tumour
consists of tumour core and edema while tumour core consists of enhancing,
non-enhancing and necrotic parts (see Fig. 1). Encoding this topological infor-
mation into FCN framework will benefit tumour segmentation, for example, a
core can never happen solely in the brain without edema region attached. To
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Fig. 3: The structure of multi-task FCN. The three up-sampling branches in the
three FCNs are represented by blue arrows.

this end, we propose a deep multi-task network, which implicitly embeds the
topology of tumour structure.

The structure of the proposed multi-task FCN is illustrated in Fig. 3. Instead
of treating the segmentation task as a single pixel-wise classification problem,
we formulate it within a multi-task learning framework. Three of the above
FCN variants with shared down-sampling path and three different up-sampling
branches (the blue arrows in Fig. 3) are applied for three separate tasks: complete
tumour, tumour core and enhancing tumour classification. Then, the outputs
(i.e., probability maps) from the three branches are concatenated and fed to
a block of two convolutional layers followed by the final softmax classification
layer (‘combination stage’ in Fig. 3). The combination stage considers the mutual
inclusive information of all subregions in tumours estimated from the above three
tasks. The ‘combination stage’ task is a 5-class classification task whereas the
others are binary classification tasks. Cross-entropy loss is used for each task.
Therefore, the total loss in our proposed multi-task FCN is

Ltotal(θ) =
∑

m∈{t,c,e,f}

Lm(θm) = −
∑

m∈{t,c,e,f}

∑
n

∑
i

logPm(lm(xn,i);xn,i, θm)

(1)
where {t, c, e, f} are the tasks of complete tumour, tumour core, enhancing core
and the final combination stage, respectively. θ = {θt, θc, θe, θf} is the set of
weight parameters in the multi-task FCN. Lm refers to the loss function of each
task. xn,i is the i-th voxel in the n-th image used for training, and Pm refers to
the predicted probability of the voxel xn,i belonging to class lm.

In the proposed multi-task FCN, 2D slices split from 3D MR volumes from
axial view are used as part of input to the network. In addition, since adding
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brain symmetry information has been proven helpful for FCN based tumor seg-
mentation [8], ‘symmetric intensity difference’ maps are combined with original
slices as the input, resulting in totally 8 input channels (see Fig 2 and 3) to the
network.

3 Evaluation

Our model was evaluated on BRATS13 and BRATS15 datasets. BRATS13 con-
tains 20 HG patients for training and 10 HGs for testing. (The 10 LG patients
were not used for the HG segmentation task) . For BRATS15, we used 220 an-
notated HG patients’ images in the training set. For each patient, there exist
4 modalities (T1, T1-contrast (T1c), T2 and Flair) which were skull-stripped
and co-registered. Quantitative evaluation is performed on three sub-tasks: 1)
the complete tumor (including all four tumor structures); 2) the tumour core
(including all tumor structures except “edema”); 3) the enhancing tumor re-
gion (including only the “enhancing tumor” structure). For each sub-task, Dice,
Sensitivity and Positive Predictive Value are computed.

Our model was implemented with the Keras library and Theano backend. For
each MR image, voxel intensities were normalised to have zero mean and unit
standard deviation. The network was trained with standard back-propagation
using Adam optimizer. Learning rate was 0.001. The downsampling path was
initialized with VGG-16 weights [7] while upsampling paths were initialized ran-
domly using the strategy in [15].

3.1 Results on BRATS13 dataset

A 5-fold cross validation was performed on the 20 HG images in BRATS13 set.
The training folds were augmented by scaling, rotating, flipping each image,
before they were used for training the models.

We also compare a variant of the proposed multi-task model by replacing core
task by edema task. The reason is: tumour core is a super-structure containing
enhancing, non-enhancing and necrotic parts, which are different in texture ap-
pearance, e.g., in T1c (see Fig 1), enhancing parts show hyper-intensity signal
whereas necrosis has low-intensity signal. The variability of core across patients
is large as it depends the size of enhancing or necrotic parts. On the other hand,
the texture appearance of edema is relatively consistent (e.g, hyper-intensity
signal in Flair). Therefore, four models were compared on both validation set
and test set: 1) variant of FCN (Fig.2), denoted FCN; 2) our implementation
of FCN with topology loss proposed by [16], denoted FCN+Topology; 3) the
multi-task FCN with core task, denoted as mFCN core; 4) the multi-task FCN
with edema task, denoted as mFCN edema.

For the validation set, We plot Dice values of three tasks for the above four
models at different epochs (every 5 epochs and up to 50) shown in the top row
of Fig.4. It can be observed that although at the starting points (e.g., the fifth
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Fig. 4: From left to right: validation results of four models on Complete, Core
and Enhancing tumor task. The vertical axis is Dice while horizontal axis is the
number of epochs. The top row refers to BRATS13 while the bottom refers to
BRATS15.

epoch), mFCN core and mFCN edema have lower performance due to the ex-
tra parameters in the network, they both outperforms baseline FCN in all tasks
at most training epochs, especially for mFCN core. mFCN edema give com-
petitive segmentation results in terms of Complete and Enhancing tasks while it
is slightly worse in Core task compared to mFCN core. We also observe using
topology loss proposed by [16] give improvements over baseline FCN, indicat-
ing tumour segmentation benefits from encoding structure topology information.
However, it is worse in all sub-tasks compared to mFCN core, which confirms
the efficacy of multi-task FCN framework. The validation performances of both
mFCN core and mFCN edema models were saturated or even decreased around
30 epochs. Therefore, models trained at 30 epochs were used for benchmarking
on test data.

We evaluated the proposed models on BRATS13 testing set. As it only con-
tains HG images, we only use the 20 HG images for training. Both mFCN out-
perform FCN in most sub-tasks in terms of Dice and Sensitivity. This conclusion
is consistent with the results on the validation set.

On BRATS13 testing set, our models are among the top-ranking in the state-
of-the-arts (see Table 1). Specifically, Our models outperform all the best per-
formers (Tustison, Meier and Reza) of BRATS13 challenge [1] and is also better
than a semi-automatic method [9]. For CNN methods, our results are competi-
tive to Pereira’s [3] and better than Havaei’s [4] while we report a 3 times faster
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Table 1: Comparison with the state-of-the-arts on the testing set (ranked by
VSD evaluation system [1])

Dice Positive Predictive Value Sensitivity
Method

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Pereira [3] 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81

mFCN core 0.88 0.83 0.75 0.86 0.85 0.70 0.91 0.85 0.83

mFCN edema 0.88 0.82 0.76 0.85 0.82 0.72 0.92 0.85 0.82

FCN 0.87 0.82 0.75 0.85 0.87 0.72 0.89 0.79 0.80

Kwon [9] 0.88 0.83 0.72 0.92 0.90 0.74 0.84 0.78 0.72

Havaei [4] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80

Tustison [2] 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

Meier [1] 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Reza [1] 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76

Table 2: Performance on the BRATS15 44 testing set
Dice Positive Predictive Value Sensitivity

Method
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

FCN 88.1 70.9 72.5 92.2 82.7 79.7 86.0 67.5 70.5

mFCN edema 88.5 71.0 73.1 91.2 82.4 78.7 87.5 67.9 71.4

of average computational time (3 min) than the one (8 min) reported by Pereira’s
[3] due to the fast inference property of FCN. A direct comparison with 3D CNN
[5] is not applicable as they did not report results on this dataset.

3.2 Results on BRATS15 dataset

We randomly split 220 HG images in BRATS15 training set into three subsets
at a ratio of 6:2:2, resulting in 132 training, 44 validation and 44 test images.
The performance curves along epochs are shown in the bottom row of Fig 4. We
found mFCN edema performs best on this dataset, especially for Enhancing
task while slightly better for Complete task and comparable for Core task. How-
ever, mFCN core performs worse compared to mFCN edema. We attributes
this inconsistency with BRATS13 to the relatively noise ground truth. It is worth
noting that, in contrast to BRATS13 (where ground truth is the fusion of anno-
tations from multiple radiologists), the ground truth of BRATS15 was produced
by algorithms. Although it was verified by radiologists, it is less trustable com-
pared to BRATS13, especially for the Core region, which has larger appearance
variability.

On the 44 unseen test images, we trained the model by 25 epochs with
both training and validation set. The results of baseline FCN and mFCN edema
are shown in Table 2. Consistent with the results on the validation set, The
bmFCN edema outperforms baseline FCN and in all sub-tasks in terms of Dice
and Sensitivity, especially for Enhancing task.



8 H.Shen et al.

4 Conclusion

In this paper, we introduced a multi-task FCN for brain tumor segmentation.
Our approach formulates and jointly learns the Complete, Core and Enhancing
of tumour segmentation tasks in a multi-task framework, which implicitly encode
the topology information of subregions in tumour structure. This multi-task FCN
achieved state-of-the-art results, and improved all sub-task segmentation perfor-
mance on both BRATS13 and BRATS15 datasets compared to the single-task
FCN. Our method is among the top ranked methods and has low computational
cost.
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