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Abstract. In trustworthy medical diagnosis systems, integrating out-
of-distribution (OOD) detection aims to identify unknown diseases in
samples, thereby mitigating the risk of misdiagnosis. In this study, we
propose a novel OOD detection framework based on vision-language
models (VLMs), which integrates hierarchical visual information to cope
with challenging unknown diseases that resemble known diseases. Specif-
ically, a cross-scale visual fusion strategy is proposed to couple vi-
sual embeddings from multiple scales. This enriches the detailed rep-
resentation of medical images and thus improves the discrimination
of unknown diseases. Moreover, a cross-scale hard pseudo-OOD sam-
ple generation strategy is proposed to benefit OOD detection maxi-
mally. Experimental evaluations on three public medical datasets support
that the proposed framework achieves superior OOD detection perfor-
mance compared to existing methods. The source code is available at
https://openi.pcl.ac.cn/OpenMedIA/HVL.
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1 Introduction

An intelligent medical diagnosis system is typically designed to recognize some
disease categories after the system are trained on known in-distribution (ID)
data. However, in real-world scenarios, the system would often encounter medi-
cal images of unknown diseases which are called out-of-distribution (OOD) data.
OOD detection aims to identify unknown diseases and reject uncertain predic-
tions, thereby improving the system’s robustness.

Multiple developed methods [4,13,14,20,22,25] have demonstrated impressive
OOD detection performance in the medical image and natural image domains.
However, these methods are uni-modal and often incapable of detecting challeng-
ing OOD data that are visually similar to ID classes. In contrast, very recent
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studies [10,15,23,24] start to explore pre-trained vision-language models (VLMs)
like CLIP [18] for OOD detection, which use text guidance to learn a better deci-
sion boundary between ID and OOD data. In particular, local image regions such
as background regions in ID images are commonly adopted to construct pseudo-
OOD samples [15, 23, 24]. However, in medical images, background regions are
often clearly different from lesion regions, while lesions of unknown diseases in
OOD images could be very similar to some learned known (ID) diseases. This
makes existing local region-based methods ineffective for medical image analysis.

In this paper, we propose a novel hierarchical vision-language learning frame-
work for OOD detection tailored for medical image analysis. Unlike previous
studies [10,24] that analyze local regions and the original image as two separate
parts of the information source, this study proposes a cross-scale visual fusion
to couple local details with global information from the original image for a
comprehensive understanding of medical images. Moreover, this study proposes
a cross-scale hard pseudo-OOD sample generation strategy for OOD detection.
Specifically, a novel entropy gain is applied to construct hard pseudo-OOD vi-
sual embeddings around boundary areas of lesions in ID images. By learning to
identify hard pseudo-OOD visual embeddings from the patch level to the whole
image level, the VLM can achieve better OOD detection performance. Exten-
sive experiments on three datasets with diverse sample distributions support our
framework achieves state-of-the-art OOD detection performance, thus improving
reliability for clinical applications. Our contributions are summarized below.

– A novel hierarchical vision-language learning framework based on VLMs for
medical OOD detection;

– A cross-scale visual fusion method for coupling both local and global infor-
mation to promote the detection of unknown diseases;

– A hard pseudo-OOD generation strategy across scales for OOD detection.

Relation to concurrent work: A concurrent work GLAli [7] is proposed to
unify ID classification and OOD detection in few-shot scenario by incorporating
visually guided text refinement, local contrastive learning, and multi-scale im-
age–text alignment, enhancing performance across both tasks. Unlike GLAli, our
method focuses on modeling interactions among hierarchical visual embeddings
under pseudo-OOD guidance to better tackle the near-OOD challenge.

2 Method

This study aims to improve OOD detection ability of a diagnostic system which
is trained only with available ID data. During inference, the model is expected
to diagnose all known diseases and detect unknown diseases.

2.1 Framework Overview

Our proposed framework called HVL is illustrated in Figure 1. In the image
encoder branch, we construct hierarchical inputs by upsampling the image and
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Fig. 1. Overview of our proposed HVL framework. Left: Visual embeddings from the
original image and its patches are fused across scales and different learnable biases are
added to text embeddings to align with visual embeddings. Right: (R1). Lower-scale
visual embeddings progressively enhance higher-scale visual embeddings. (R2). High-
scale hard pseudo-OOD embeddings are selected via entropy gain and propagated to
lower scales. Then, these pseudo-OOD embeddings are used for model training.

partitioning it into multi-scale patches. At the output side of the image encoder
followed by the learnable adapter, there is a visual fusion route (R1) and a hard
pseudo-OOD embedding generation route (R2) with different delivery directions.
For the visual fusion route R1, inspired by the combination of local pathology
and global information for diagnostic decision-making in common diagnostic sce-
narios, a cross-scale visual fusion is proposed to couple visual embeddings from
multiple scales in a coarse-to-fine manner as shown in Figure 1, R1. The en-
hanced embeddings support the model to explore the visual information from a
contextual perspective rather than a simple combination of local region infor-
mation and global information as in previous work [10,24]. In the pseudo-OOD
sample generation route (Figure 1, R2), we propose a strategy to select hard
pseudo-OOD regions from boundary areas surrounding lesions, and then the
model learns to differentiate these hard-pseudo OOD regions from ID lesions at
different scales, enabling it to identify unknown diseases through multiple scales.
For the text encoder branch (Figure 1, a), we propose adjusting text embeddings
with different learnable biases to align with hierarchical visual embeddings.

2.2 Cross-Scale Visual Fusion and Hierarchical Feature Alignment

Previous studies [1, 11, 15, 16, 23] employ CLIP’s image encoder, where the en-
tire image is encoded as an image-level presentation for OOD detection. Thus,
these methods fail to extract fine-grained details of local regions and may not
accurately detect unknown diseases if the corresponding lesion regions are small
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in images. To address this limitation, we propose partitioning each image into
multi-scale patches to extract more discriminative detail information. Specifi-
cally, as shown in Figure 1, firstly n× and 2n× upsampling (e.g., n = 2) are re-
spectively applied to the original image x to obtain the mid-scale and high-scale
inputs, and then the two upsampled images are partitioned into n×n and 2n×2n
patches respectively. Visual embeddings of the original image and the partitioned
patches are extracted using the CLIP’s image encoder fI followed by a learnable
adapter. Formally, the original image x is encoded in v = fI(x) ∈ Rd×1, and
then adjusted by the adapter to the visual embedding u0 = ReLU(vTW) + v,
where W ∈ Rd×d. Similarly, patches from the mid- and high-scale inputs are en-
coded into visual embeddings {u1

i }
n×n
i=1 and {u2

j}
2n×2n
j=1 . These initial hierarchical

embeddings of the image x and will be improved as follows.
In disease diagnosis scenarios, it is common for human doctors to combine lo-

cal pathology with global information to make a diagnosis. Intuitively, coupling
global and local information can help understand the context of local details in
the original image, which promotes the reliable detection of unknown diseases
even if they are visually similar to certain known diseases. Inspired by such ob-
servation, we propose a cross-scale visual feature fusion strategy to complement
global visual information for OOD detection of unknown diseases. Specifically,
the embedding of each higher-scale patch is augmented with the corresponding
lower-scale patch’s embedding in a coarse-to-fine manner, i.e.,

û1
i = u1

i + cos(u1
i ,u

0) · u0, û2
j = u2

j + cos(u2
j , û

1
j∗) · û1

j∗ , (1)

where cos(·, ·) is the cosine similarity function, and û1
j∗ represents the augmented

embedding of the mid-scale patch whose further partitions include the higher-
scale patch associated with the embedding u2

j . The weighting strategy based on
cosine similarity ensures that the lower-scale information as a context will be
passed to embeddings of higher-scale patches, while the information in higher-
scale patch embeddings which is more different from the lower-scale information
will be well preserved in the augmented higher-scale patch embeddings.

These refined higher-scale visual embeddings û1
i ’s and û2

j ’s, together with the
global embedding u0, will be used in model training and inference. However, some
mid- and high-scale patches may only contain normal tissues, and such disease-
relevant in general should not be used to recognize the disease category of the
original image. Therefore, it is necessary to find and then remove those disease-
irrelevant patches when classifying each image. In our proposed framework HVL,
the text encoder branch is used not only to help classify each image but also to
help find disease-irrelevant patches as detailed below.

In the text encoder branch, let zc denote the text description “a photo of a
[class-c]”, where class-c represents the class name or description for class c. The
text embedding tc for class c from the CLIP’s text encoder can be obtained as
tc = fT (zc) ∈ Rd×1. Denote by t = [t1, ..., tC ] ∈ Rd×C the text embedding col-
lection for all C ID classes. Considering that visual embeddings contain visual
information of different scales, it is probably unsuitable to match multi-scale
visual embeddings with the initial text embedding. Therefore, we propose ad-
justing the text embeddings with learnable biases. Specifically, learnable biases
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b0,b2 ∈ Rd×C are each added to t to obtain t0 = t + b0 and t2 = t + b2

which will be used to match visual embeddings from the original input and the
high-scale patches, respectively. The mid-scale text embeddings are obtained as
t1 = t + b1 = [t11, ..., t

1
C ], where the bias b1 = 1

2 (b
0 + b2) is not independently

learnable but from the biases b0 and b2 for coupling information across scales.
Then, scale-wise alignment between visual embeddings and text embeddings can
be computed. For example, the degree of alignment between the mid-scale visual
embedding û1

i and the text embedding t1c of class c is cos(û1
i , t

1
c). Such alignment

can be used to estimate the probability of classifying û1
i as class c, i.e.,

p(y = c|û1
i ) =

exp(cos(û1
i , t

1
c)/τ)∑C

c′=1 exp(cos(û
1
i , t

1
c′)/τ)

, (2)

where τ is a fixed temperature scaling hyper-parameter. Since disease-irrelevant
normal tissues often appear in images of all disease classes, the probability of
classifying one disease-irrelevant patch into each class will be more or less sim-
ilar to each other. With this consideration, the entropy of the probability dis-
tribution over all C classes can be used to determine which patches are likely
disease-irrelevant. Specifically, let p1

i ∈ RC×1 denote the probability distribu-
tion for the mid-scale patch associated with û1

i , where each component in p1
i is

computed based on Equation 2. The average entropy over all mid-scale patches
can be obtained as H

1
=

∑
i H(p1

i ), with H(p1
i ) representing the entropy of p1

i .
Since disease-irrelevant patches often have higher entropy, those patches whose
entropy is higher than H

1
will be estimated as disease-irrelevant patches and

therefore not considered for prediction. Consequently, the prediction probabil-
ity distribution based the mid-scale patches can be estimated by the average
p1 = 1

n×n

∑n×n
i=1 I(H(p1

i ) ≤ H
1
) · p1

i , where I(·) represents the indicator func-
tion. Similarly, the prediction probability distribution p2 based on the high-scale
patches can be obtained. Overall, the model can be trained by minimizing three
cross-entropy loss terms LCE based on scale-wise image-text alignment, i.e.,

LID = E(x,y)∼Din

{
LCE(p

0, y) + LCE(p
1, y) + LCE(p

2, y)
}
, (3)

where Din represents the training set of all C ID classes and E for expectation.
p0 is obtained based on the global visual embedding u0 and text embeddings t0.

2.3 Hard Pseudo-OOD Sample Generation

To improve OOD detection performance, previous efforts leverage ID-irrelevant
local regions such as background in images as pseudo-OOD data for model train-
ing [15,23,24]. However, in medical images, normal tissues in background regions
are often quite distinct from lesion regions, while the lesions of unknown dis-
eases in OOD images are often similar to ID disease lesions. Therefore, using
pure background regions as pseudo-OOD data may not be effective in improving
OOD detection in medical scenarios.
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Generally, rather than the disease-irrelevant regions, boundary areas sur-
rounding lesions are more similar to lesion regions because of their tissue-related
information. To use the regions from lesion boundary areas as hard OOD sam-
ples for model training, a novel entropy gain based strategy is proposed to locate
these regions. The basic idea is to find those mid-scale patches that likely contain
lesion information, while at least one high-scale patch from the partitions of each
selected mid-scale patch are less likely to contain lesions. Such high-scale patches
from boundary areas surrounding lesions can be selected based on the entropy
of mid-scale regions and the corresponding high-scale patches. Specifically, the
selected high-scale patches have higher entropy gain ∆H(p2

j ) = H(p2
j )−H(p1

j∗),
where the entropy term −H(p1

j∗) encourages selecting the high-scale patches
from the partitions of the regions near the lesions, while entropy H(p2

j ) help
avoid selecting the high-scale patches containing lesions. Suppose top-K visual
embeddings {q2

k}Kk=1 ⊂ {û2
j}

2n×2n
j=1 of high-scale patches are selected. These top-

K visual embeddings of high-scale patches will be used as hard pseudo-OOD
embeddings at the high-scale level to help improve the model’s OOD detection
performance. To construct hard pseudo-OOD visual embeddings which would
help increase the ID-OOD discrimination ability of text embeddings at lower-
scale levels, each selected q2

k is progressively fused with all embeddings from
each scale weighted by cosine similarity as follows,

q1
k = q2

k +
1

n× n

n×n∑
i=1

cos(q2
k, û

1
i ) · û1

i , q0
k = q1

k + cos(q1
k,u

0) · u0 . (4)

In this way, some lesion information at each lower scale will be inserted into the
visual embeddings q0

k and q1
k, making the embeddings difficult to differentiate

from the visual embeddings of real lesions, while the cosine similarity controls
the proportion of lesion information in the hard embeddings q0

k and q1
k to a

low level. With these hard pseudo-OOD visual embeddings at three scales, the
model’s OOD detection performance can be improved by the well-known outlier
exposure strategy [6], i.e., maximizing entropy (or minimizing negative entropy)
of prediction probability distribution for pseudo-OOD data with the loss LOOD

LOOD = −Ex∼Din{ 1

K

K∑
k=1

(H(p0
k) + H(p1

k) + H(p2
k))} , (5)

where p1
k represents the prediction probability distribution whose components

are from the alignment between the visual embedding q1
k and the text embed-

dings t1 (refer to Equation 2), and similarly for p0
k and p2

k. Overall, the model
will be trained by minimizing the combined loss L = LID + LOOD.

During model inference, for any test image, prediction distributions p0,p1,p2

from the three scales are averaged as the final prediction distribution pID =
1
3 (p

0 + p1 + p2), where p0,p1,p2 are obtained as described in Section 2.2. For
OOD detection, the MSP [5] score, i.e., the maximum output component in the
the final prediction distribution pID, is used to identify OOD samples, with
lower score suggesting that the test data is more likely an OOD sample.
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3 Experiment

3.1 Experimental Setup

Datasets: We conducted experiments on the SD-198 [19], ISIC 2019 [21] for
dermatology and NCT-CRC [8] datasets for histology respectively. For the SD-
198 dataset, we used its subset Skin-40 [12] which contains 40 categories as ID
classes and the collection of the remaining 158 categories as OOD data. For
the ISIC 2019 dataset, we selected NV, MEL, DF and VASC as ID categories
with a long tail data distribution and called it ISIC-4, while the remaining four
categories serve as OOD data. Following the setup in previous work [17], we
divided the NCT-CRC dataset into three OOD detection tasks, each of which
designates three categories as OOD data, while the remaining categories serve
as ID data. We report the average performance of these three tasks. Note that
we employed five-fold cross-validation on ISIC-4 benchmark while training all
models on the official training set of Skin40/NCT-CRC with three different seeds.
Implementation details: The pre-trained CLIP (ViT-B/16 [2]) was used as
backbone in all experiments. The number of selected regions K was set to 4 and
the number of partitions n was set to 2 by default. The model was trained up
to 100 epochs using the Adam optimizer [9] with a learning rate of 0.002 and a
mini-batch size of 32, following a cosine annealing schedule.

Table 1. Performance comparison on the three benchmarks. VLM-based methods
are marked with “✓” while uni-modal methods are marked with “ - ”. All values are
percentages. The range of standard deviation is [0.13, 1.72].

ID NCT-CRC ISIC-4 Skin40 Average

Method Acc F↓ A↑ Acc F↓ A↑ Acc F↓ A↑ Acc F↓ A↑

CoPR - 97.94 50.65± 0.74 88.77±0.36 90.32 68.78±0.51 81.89±0.93 68.08 85.33±0.89 69.72±0.38 85.45 68.25±0.45 80.13±0.42

ViM - 97.94 54.33±1.03 88.24±1.25 90.32 65.13±0.55 84.22±0.13 68.08 77.24±0.71 70.67 ±0.35 85.45 65.56±0.56 81.04±0.42

GEN - 97.94 51.26±0.92 89.02±0.74 90.32 63.71±0.34 82.18±0.62 68.08 86.38±1.00 63.65±0.73 85.45 67.11±0.87 78.28±0.72

NPOS - 95.25 57.21±1.64 86.02±1.02 85.03 65.45±1.03 80.94±1.18 71.32 81.70±1.25 71.85±0.83 83.87 68.12±1.15 79.60±0.93

LoCoOp ✓ 97.68 54.38±0.76 85.61±0.53 82.40 69.04±0.83 83.21±0.94 63.30 85.03±0.73 68.03±0.68 81.13 69.48±0.71 78.95±0.66

SCT ✓ 95.50 58.08±0.51 83.81±0.25 83.10 67.90±0.91 81.21±0.75 64.33 89.74±0.59 63.12±0.42 80.97 71.90±0.63 76.05±0.51

LSN ✓ 96.97 62.30±1.72 83.87±0.56 80.85 67.44±1.66 80.03±1.47 65.15 84.05±1.45 67.18±1.07 80.99 71.26±1.59 77.03±1.22

GalLop ✓ 98.11 59.91±0.44 87.27±0.65 85.15 72.95±0.95 78.35±0.77 76.75 86.83±0.21 69.08±0.13 86.67 73.23±0.72 78.23±0.53

Ours ✓ 98.30 37.59±0.82 90.95±0.65 88.43 56.12±0.73 85.75±0.56 72.82 74.45±0.72 73.33±0.58 86.52 56.05±0.79 83.34±0.60

Comparison methods: We implemented several leading VLM-based OOD de-
tection methods and a uni-modal method NPOS [20], all of which utilized the
same pre-trained CLIP as ours for fairness. Moreover, we first fine-tune a ViT-
B/16 following the setup in previous work [17], and then implement several
scoring functions (i.e., ViM [22], GEN [13], CoPR [3]) as OOD detectors.

Each model was evaluated with classification accuracy (Acc) on ID testing
data, and with the false positive rate of OOD samples when the true positive rate
of ID samples is at 95% (F: FPR95), and the area under the receiver operating
characteristic curve (A: AUROC) for OOD detection.
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Table 2. Ablation study of HVL on three tasks. ‘CSF’: cross-scale visual fusion. The
range of standard deviation is in [0.17, 2.54].

Components Skin40 NCT-CRC ISIC-4

LOOD ∆H(p2
j ) CSF Acc F↓ A↑ Acc F↓ A↑ Acc F↓ A↑

65.13 86.43 70.32 97.12 52.63 79.86 88.17 65.34 79.23
✓ 73.32 87.50 69.71 98.51 49.61 87.03 88.47 64.15 81.97

✓ 66.32 84.37 65.81 97.72 62.42 80.39 88.12 63.44 82.03
✓ ✓ 67.58 80.69 69.72 97.91 56.29 82.86 88.36 64.89 82.47
✓ ✓ 71.94 79.49 71.35 98.59 40.69 89.72 88.38 61.12 84.35
✓ ✓ ✓ 72.82 74.45 73.33 98.30 37.59 90.95 88.43 56.12 85.75

Fig. 2. The sensitivity study of hyper-parameters n and K (middle and right), and the
ablation study of pseudo-OOD generation at lower scales (left). Dashed lines: perfor-
mance of the best baseline ViM. Results on ISIC-4 are omitted due to space constraints.

3.2 Result Analysis

Effectiveness evaluation: As shown in Table 1, HVL achieves the best OOD
detection performance in AURCO and FPR95 on each dataset, while showing
similar average performance on ID classification compared to the best baseline
GalLop (86.52% vs. 86.67%), supporting the superior OOD detection perfor-
mance from our method. Especially, HVL achieves good generalization on the
pathology benchmark NCT-CRC, indicating that entropy gain remains effective
in selecting tissue-related local patch embeddings as pseudo-OOD embeddings.
Ablation study: As Table 2 (row 2 and row 4) shows, ablation of the loss
LOOD (which includes pseudo-OOD data selected based on ∆H(p2

j )) and the
cross-scale visual fusion strategy (CSF), respectively, leads to downgraded per-
formance. Moreover, when replacing the proposed pseudo-OOD selection based
on ∆H(p2

j ) with the background selection method in previous work [15,23], the
performance is also degraded (row 3 vs. row 2), confirming the effectiveness of the
proposed selection strategy. Further, when the generation of hard pseudo-OOD
embeddings at lower scales is ablated (i.e., q1

k = q2
k and q0

k = q2
k in Formula 4),

the OOD detection performance is also significantly decreased (Figure 2, left).
These results support each key component in our methods helps OOD detection.
Sensitivity study: Figure 2 (middle and right) shows our method performs
stably well and better than the best baseline ViM when K varies in the large
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range [4, 8]. Although our method outperforms the best baseline when n varies
in [2, 8], it can lead to the loss of local information and result in suboptimal
performance when n is larger than 4 (i.e., overly small local patches).
Inference cost: During inference, original images and patches are encoded in
parallel, resulting in latency nearly identical to same-backbone models. HVL
incurs only slight memory overhead compared to single-scale methods (2.1GB
for LoCoOp vs. 2.8GB for HVL with an image input).

4 Conclusion

In this study, we propose a novel VLM-based learning framework for OOD de-
tection. The design of cross-scale visual fusion enables the model to capture
details of images. Moreover, entropy-gain based local region selection and hard
pseudo-OOD embedding generation improve OOD detection performance across
scales. Extensive experiments validate the effectiveness of our method.
Acknowledgments. This work is supported in part by the National Natural
Science Foundation of China (grant No. 62071502), the Major Key Project of
PCL (grant No. PCL2023A09), and Guangdong Excellent Youth Team Program
(grant No. 2023B1515040025).
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