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Abstract. Accurate automated analysis of electroencephalogra-
phy (EEG) would largely help clinicians effectively monitor and diagnose
patientswith various brain diseases. Compared to supervised learningwith
labelled disease EEG data which can train a model to analyze specific dis-
eases but would fail to monitor previously unseen statuses, anomaly detec-
tion based on only normal EEGs can detect any potential anomaly in new
EEGs. Different from existing anomaly detection strategies which do not
consider any property of unavailable abnormal data during model develop-
ment, a task-oriented self-supervised learning approach is proposed here
which makes use of available normal EEGs and expert knowledge about
abnormal EEGs to train a more effective feature extractor for the subse-
quent development of anomaly detector. In addition, a specific two-branch
convolutional neural network with larger kernels is designed as the fea-
ture extractor such that it can more easily extract both larger-scale and
small-scale features which often appear in unavailable abnormal EEGs.
The effectively designed and trained feature extractor has shown to be able
to extract better feature representations from EEGs for development of
anomaly detector based on normal data and future anomaly detection for
new EEGs, as demonstrated on three EEG datasets. The code is available
at https://github.com/ironing/EEG-AD.
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1 Introduction

Electroencephalography (EEG) is one type of brain imaging technique and has
been widely used to monitor and diagnose brain status of patients with various
brain diseases (e.g., epilepsy) [2,10–12,16]. EEG data typically consists of mul-
tiple sequences (or channels) of waveform signals, with each sequence obtained
by densely sampling electrical signals of brain activities from a unique electrode
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attached to a specific position on patient’s head surface. While brain activities
can be recorded by EEG equipment over hours or even days, clinicians often
analyze EEG data at the level of seconds, considering that cycles of most brain
activities varies between 0.5 Hz and 30 Hz. Therefore, it is very tedious to manu-
ally analyze long-term EEG data and automated analysis of EEG would largely
alleviate clinician efforts in timely monitoring patient statuses.

Currently, most automated analyses of EEGs focus on specific diseases [1,
8,17], where labelled EEGs at the onset of disease and normal (healthy) status
are collected to train a classifier for prediction of patient status at the level of
seconds. However, such automated systems can only help analyze specific dis-
eases and would fail to recognize novel unhealthy statuses which do not appear
during classifier training. In contrast, developing an anomaly detector based on
only normal EEGs has the potential to detect any possible unhealthy status
(i.e., anomaly) in new EEG data. While multiple anomaly detection strategies
have been developed for both natural and medical image analyses [22,24], includ-
ing statistical approaches [13,18], discriminative approaches [4,25]reconstruction
approaches [19,27]and self-supervised learning approaches [5,15], very limited
studies have been investigated on anomaly detection based on normal EEGs
only [26]. Furthermore, all these strategies build anomaly detectors without
considering any property of anomaly due to absence of abnormal data during
model development. One exception is the recently proposed CutPaste method
for anomaly detection in natural images [14], where simulated abnormal images
were generated by cutting and pasting small image patches in normal images and
then used to help train a more effective feature extractor and anomaly detector.

Inspired by the CutPaste method, we propose a novel task-oriented self-
supervised learning approach to train an effective feature extractor based on nor-
mal EEG data and expert knowledge (key properties including increased ampli-
tude and unusual frequencies) about unavailable abnormal EEGs. In addition,
a specific two-branch convolutional neural network (CNN) with larger kernels
is designed for effective extraction of both small-scale and large-scale features,
such that the CNN feature extractor can be trained to extract features of both
normal and abnormal EEGs. The feature extractor with more powerful repre-
sentation ability can help establish a better anomaly detector. State-of-the-art
anomaly detection performance was obtained on one internal and two public
EEG datasets, confirming the effectiveness of the proposed approach.

2 Methodology

In this study, we try to solve the problem of anomaly detection in EEGs when
only normal EEG data is available for training. A two-stage framework is pro-
posed here, where the first stage aims to a train a feature extractor using a novel
self-supervised learning method, and the second stage can adopt any existing
generative or discriminative method to establish an anomaly detector based on
the feature representations from the well-trained feature extractor.
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2.1 Task-Oriented Self-supervised Learning

Various self-supervised learning (SSL) strategies have been proposed to train fea-
ture extractors for downstream tasks in both natural and medical image analysis.
To make a feature extractor more generalizable for downstream tasks, existing
SSL strategies are often designed purposely without regard to any specific down-
stream task. That means, SSL strategies often do not consider characteristics
in specific downstream tasks. However, when applying any such SSL technique
to an anomaly detection task, the feature extractor based on only normal data
would less likely learn to extract features of abnormal data, and therefore may
negatively affect model performance in the subsequent anomaly detection task.

Fig. 1. Transformation of normal EEG (Left) to generate simulated amplitude-
abnormal (Middle) and frequency-abnormal (Right) EEGs. One EEG data consists
of multiple sequences (channels, y-axis) of wave signals. x-axis: time (seconds).

Different from most SSL strategies, a novel SSL strategy is proposed here to
train a feature extractor which can extract features of both normal and abnor-
mal EEG data. Specifically, considering that abnormal EEGs are characterized
by increased wave amplitude or temporally slowed or abrupt wave signals, two
special transformations are designed to generate simulated abnormal EEG data.
One transformation is to temporally locally increase amplitude of normal EEG
signals (Fig. 1, Middle), and the other transformation is to temporally increase or
decrease the frequency of normal EEG signals (Fig. 1, Right). These amplitude-
abnormal and frequency-abnormal data, together with original normal EEGs,
form a 3-class dataset for the training of a 3-class CNN classifier. The feature
extractor part of the well-trained classifier would be expected to learn to extract
features of both normal and (simulated) abnormal EEGs. While the simulated
abnormal data are different from real abnormal EEGs, empirical evaluations
show the feature extractor trained with simulated abnormal EEGs helps improve
the performance of anomaly detection significantly.

Generation of Self-labeled Abnormal EEG Data: Denote a normal EEG
data by a matrix X ∈ R

K×L, where K represents the number of channels
(sequences) and L represents the length of each sequence. To generate an
amplitude-abnormal EEG data based on X, a scalar amplitude factor α is firstly
sampled from a predefined range [αl, αh] where 1 < αl < αh, followed by sam-
pling a segment length w from a predefined sequence segment range [wl, wh]
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Fig. 2. The two-branch architecture for feature extractor training. The second branch
(lower part) consists of only one convolutional layer for extraction of small-scale fea-
tures. The part in the blue dotted box is the feature extractor. (Color figure online)

where 1 < wl < wh < L. Then w consecutive columns in X were randomly
chosen, with each element in these columns multiplied by the amplitude fac-
tor α. Such transformed EEG data with modified w consecutive columns can
be used as a simulated amplitude-abnormal EEG data (Fig. 1, Middle). On the
other hand, to generate a lower-frequency abnormal EEG data based on X, a
frequency scalar factor ω is firstly randomly sampled from a predefined range
[ωl, ωh] where 1 < ωl < ωh, and then each sequence (row) of signals in X is
linearly interpolated (i.e., upsampled) by the factor ω to generate an elongated
EEG data X′ ∈ R

K×L′
, where L′ = �ωL� is the largest number which is equal

to or smaller than ωL. One frequency-abnormal EEG data can be generated by
randomly choosing L consecutive columns from X′. Similarly, to alternatively
generate a higher-frequency abnormal EEG data from X, the frequency scalar
factor ω′ is firstly randomly sampled from another predefined range [ω′

l, ω
′
h]

where 0 < ω′
l < ω′

h < 1, and then each row of signals in X is down-sampled by
the factor ω′ to generate a shortened EEG data. The shortened EEG data is then
concatenated by itself multiple times along the temporal (i.e., row) direction to
obtain a temporary EEG data X′′ ∈ R

K×L′′
where L′′ = �ω′L� · � 1

ω′ � ≥ L. One
higher-frequency abnormal EEG data can be obtained by randomly choosing L
consecutive columns from X′′ (when L′′ > L) or just be X′′ (when L′′ = L).

Using these simple transformations and based on multiple normal EEG data,
two classes of self-labeled abnormal data will be generated, with one class repre-
senting anomaly in amplitude, and the other representing anomaly in frequency.
Although more complex transformations can be designed to generate more real-
istic amplitude- and frequency-abnormal EEGs, empirical evaluations show the
simple transformations are sufficient to help train an anomaly detector for EEGs.

Architecture Design for Feature Extractor: To train a feature extractor
with more powerful representation ability, we designed a specific CNN classi-
fier based on the ResNet34 backbone (Fig. 2). Considering that two adjacent
channels (rows) in the EEG data do not indicate spatial proximity between two
brain regions, one-dimensional (1D) convolutional kernels are adopted to learn
to extract features from each channel over convolutional layers as in previous
studies [9]. However, different from the previously proposed 1D kernels of size
1×3, kernels of longer size in time (i.e., 1×7 here) is adopted in this study. Such
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longer kernels are used considering that lower-frequency features may last for a
longer period (i.e., longer sequence segment) in EEGs and therefore would not
be well captured by shorter kernels even over multiple convolutional layers. On
the other hand, considering that some other anomalies in EEGs may last for very
short time and therefore such abnormal features may be omitted after multiple
times of pooling or down-sampling over layers, we propose adding a shortcut
branch from the output of the first convolutional layer to the penultimate layer.
Specifically, the shortcut branch consists of only one convolutional layer in which
each kernel is two-dimensional (i.e., number of EEG channels × 7) in order to
capture potential correlation across all the channels in short time interval. By
combining outputs from the two branches, both small-scale and large-scale fea-
tures in time would be captured. The concatenated features are fed to the last
fully connected layer for prediction of EEG category. The output of the classifier
consists of three values, representing the prediction probability of ‘normal EEG’,
‘amplitude-abnormal EEG’, and ‘frequency-abnormal EEG’ class, respectively.

The feature extractor plus the 3-class classifier head can be trained by min-
imizing the cross-entropy loss on the 3-class training set. After training, the
classifier head is removed and the feature extractor is used to extract features
from normal EEGs for the development of anomaly detector. Since the feature
extractor is trained without using real abnormal EEGs and the simulated abnor-
mal EEGs are transformed from normal EEGs and self-labelled, the training is
an SSL process. The SSL is task-oriented because it considers the characteristics
(i.e., crucial anomaly properties in both amplitude and frequency of abnormal
EEGs) in the subsequent specific anomaly detection task. The feature extractor
based on such task-oriented SSL is expected to be able to extract features of
both normal and abnormal EEGs for more accurate anomaly detection.

2.2 Anomaly Detection

While in principle any existing anomaly detection strategy can be applied based
on feature representations of normal EEGs from the well-trained feature extrac-
tor, here the generative approach is adopted to demonstrate the effectiveness of
the proposed two-stage framework considering that a large amount of normal
EEG data are available to estimate the distribution of normal EEGs in the fea-
ture space. Note discriminative approaches like one-class SVM may be a better
choice if normal data is limited. As one simple generative approach, multivari-
ate Gaussian distribution G(µ,Σ) is used here to represent the distribution of
normal EEGs, where the mean µ and the covariance matrix Σ are directly esti-
mated from the feature vectors of all normal EEGs in the training set, with each
vector being the output of the feature extractor given a normal EEG input.

With the Gaussian model G(µ,Σ), the degree of abnormality for any new
EEG data z can be estimated based on the Mahalanobis distance between the
mean µ and the feature representation f(z) of the new data z, i.e.,

A(z) =
√

(f(z) − µ)�Σ−1(f(z) − µ) . (1)

Larger A(z) score indicates that z is more likely abnormal, and vice versa.
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3 Experiments and Results

Experimental Settings: Three EEG datasets were used to evaluate the pro-
posed approach, including the public Children’s Hospital Boston-Massachusetts
Institute of Technology Database (‘CHB-MIT’) [21] and the UPenn and Mayo
Clinic’s Seizure Detection Challenge dataset (‘UPMC’) [23], and an internal
dataset from a national hospital (‘Internal’). See Table 1 for details. While only
the ictal stage of seizure is included as anomaly in UPMC, both ictal and various
interictal epileptiform discharges (IEDs) were included in Internal and CHB-
MIT. Particularly, the abnormal waveforms in Internal include triphasic waves,
spike-and-slow-wave complexes, sharp-and-slow-wave complex, multiple spike-
and-slow-wave complexes, multiple sharp-and-slow-wave complex and ictal dis-
charges. 2 out of 23 patients were removed from CHB-MIT due to irregular
channel naming and electrode positioning. For normal EEG recordings lasting
for more than one hour in CHB-MIT, only the first hour of normal EEG record-
ings were included to partly balance data size across patients. In UPMC, only
dog data were used because of inconsistent recording locations across human
patients. For CHB-MIT and Internal, each original EEG recording was cut into
short segments of fixed length (3 s in experiments). For UPMC, one-second short
segments have been provided by the organizer. Each short segment was consid-
ered as one EEG data during model development and evaluation. Therefore the
size of each EEG data is [number of channels, sampling rate × segment dura-
tion]. For each dataset, signal amplitude in EEG data was normalized to the
range [0, 1] based on the minimum and maximum signal values in the dataset.

Table 1. The statistics of three EEG datasets.

Dataset Sampling rate Channels Patients Normal EEGs
(seconds)

Abnormal EEGs
(seconds)

Internal 1024 19 50 30008 14402

CHB-MIT 256 18 21 70307 11506

UPMC 400 16 4 9116 1087

On each dataset, while all abnormal EEG data were used for testing, normal
EEG data were split into training and test parts in two ways. One way (Setting
I, default choice) is to randomly choose the same number of normal EEGs as
that of abnormal EEGs for testing and the remaining is for training, without
considering patient identification of EEGs. The other (Setting II, subject level) is
to split patients with the cross-validation strategy, such that all normal EEGs of
one patient were used either for training or test at each round of cross validation.

In training the 3-class classifier, for each batch of 64 normal EEGs, corre-
spondingly 64 amplitude-abnormal EEGs and 64 frequency-abnormal (32 higher-
frequency and 32 lower-frequency) EEGs were generated (see Sect. 2.1). Adam
optimizer with learning rate 0.0001 and weight decay coefficient 0.00003 were
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Table 2. Performance comparison on three datasets with Setting I. Bold face indicates
the best, and italic face for the second best. Standard deviations are in brackets.

Method Internal CHB-MIT UPMC

EER↓ F1↑ AUC↑ EER↓ F1↑ AUC↑ EER↓ F1↑ AUC↑
OC-SVM 0.30(0.008) 0.71(0.008) 0.75(0.02) 0.33(0.001) 0.69(0.001) 0.73(0.003) 0.33(0.01) 0.51(0.02) 0.74(0.01)

KDE 0.24(0.001) 0.76(0.001) 0.87(0.001) 0.32(0.002) 0.69(0.002) 0.75(0.003) 0.24(0.003) 0.70(0.004) 0.83(0.003)

AE 0.35(0.01) 0.65(0.01) 0.69(0.02) 0.46(0.007) 0.54(0.007) 0.56(0.01) 0.32(0.02) 0.61(0.02) 0.75(0.02)

MSCRED 0.37(0.02) 0.64(0.03) 0.67(0.03) 0.34(0.03) 0.67(0.03) 0.72(0.03) 0.28(0.02) 0.70(0.02) 0.76(0.02)

USAD 0.25(0.02) 0.76(0.02) 0.83(0.02) 0.30(0.02) 0.69(0.03) 0.79(0.02) 0.24(0.02) 0.75(0.02) 0.82(0.02)

ScaleNet 0.18(0.01) 0.82(0.01) 0.90(0.01) 0.26(0.03) 0.73(0.03) 0.81(0.03) 0.20(0.03) 0.75(0.03) 0.89(0.03)

CutPaste 0.26(0.02) 0.74(0.02) 0.83(0.03) 0.26(0.01) 0.74(0.01) 0.83(0.01) 0.21(0.01) 0.74(0.01) 0.87(0.006)

Ours 0.11(0.01) 0.89(0.01) 0.95(0.004) 0.16(0.01) 0.84(0.02) 0.92(0.02) 0.13(0.007) 0.83(0.01) 0.95(0.006)

adopted, and training was consistently observed convergent within 300 epochs.
[αl, αh] = [2.0, 4.0], [wl, wh] = [4, L], [ωl, ωh] = [2, 4], and [ω′

l, ω
′
h] = [0.1, 0.5].

The ranges of amplitude and frequency scalar factors were determined based on
expert knowledge about potential changes of abnormal brain wave compared to
normal signals. The area under ROC curve (AUC) and its average and standard
deviation over five runs (Setting I) or multiple rounds of validation (Setting II),
the equal error rate (EER), and F1-score (at EER) were reported.

Effectiveness Evaluation: Our method was compared with well-known
anomaly detection methods including the one-class SVM (OC-SVM) [20], the
statistical kernel density estimation (KDE), and the autoencoder (AE) [7],
the recently proposed methods Multi-Scale Convolutional Recurrent Encoder-
Decoder (MSCRED) [28] and Unsupervised Anomaly Detection (USAD) [3] for
multivariate time series, and the recently proposed SSL methods for anomaly
detection, including ScaleNet [26] and CutPaste [14]. Note that ScaleNet [26]
uses frequencies of normal EEGs at multiple scales to help detect abnormal
EEGs, without considering any characteristics in abnormal EEGs. Similar efforts
were taken to tune relevant hyper-parameters for each method. In particular, to
obtain feature vector input for OC-SVM and KDE, every row in each EEG data
was reduced to a 64-dimensional vector by principal component analysis (PCA)
based on all the row vectors of all normal EEGs in each dataset, and then all the
dimension-reduced rows were concatenated as the feature representation of the
EEG data. For AE, the encoder consists of three convolutional layers and one
fully connected (FC) layer, and symmetrically the decoder consists of one FC and
three deconvolutional layers. For CutPaste, each normal EEG in each training
set is considered as a gray image of size K × L pixels, and the suggested hyper-
parameters from the original study [14] were adopted for model training. For
ScaleNet, the method was re-implemented with suggested hyper-parameters [26].
As Table 2 shows, on all three datasets, our method (last row) outperforms all
the baselines by a large margin. Consistently, as Fig. 3 (Left) demonstrates, our
method performed best as well at the subject level (i.e., Setting II), although
the performance decreases a bit due to the more challenging setting. All these
results clearly confirm the effectiveness of our method for anomaly detection in
EEGs.
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Fig. 3. Performance comparison at the subject level (i.e., Setting II) on each dataset
(Left), and the ablation study of the feature extractor training (Right). AUC values
were included in figure for each method. Vertical line: standard deviation.

Table 3. The effect of simulated anomaly classes and the two-branch architecture on
anomaly detection with ‘Internal’ dataset.

Amplitude-abnormal � � � � �
Frequency-abnormal � � � � �
Two-branch � �
Larger kernel � �
AUC 0.71(0.04) 0.91(0.001) 0.89(0.01) 0.93(0.01) 0.94(0.006) 0.94(0.005) 0.95(0.004)

Ablation Studies: To specifically confirm the effectiveness of the proposed
task-oriented SSL strategy in training a feature extractor for EEG anomaly
detection, an ablation study is performed by replacing this SSL strategy with sev-
eral other SSL strategies, including (1) training an autoencoder and then keeping
the encoder part as the feature extractor, (2) training a ScaleNet and then keep-
ing its feature extractor part whose structure is the same as the proposed one,
and (3) contrastive learning of the proposed two-branch feature extractor using
the well-known SimCLR method [6]. As Fig. 3 (Right) shows, compared to these
SSL strategies which do not consider any property of anomalies in EEGs, our
SSL strategy performs clearly better on all three datasets.

Another ablation study was performed to specifically confirm the role of the
proposed two-branch backbone and self-labeled abnormal EEGs during feature
extractor training. From Table 3, it is clear that the inclusion of the two types
of simulated anomalies boosted the performance from AUC = 0.71 to 0.93, and
additional inclusion of the second branch (‘Two-branch’) and change of kernel
size from 1 × 3 to 1 × 7 (‘Larger kernel’) further improved the performance.

In addition, one more evaluation showed the proposed simple transforma-
tions (based on simulated anomalies in frequency and amplitude individually)
performed better than the more complex transformations (based on combina-
tions of simulated abnormal frequency and amplitude), with AUC 0.954 vs. 0.901
on dataset Internal, 0.924 vs. 0.792 on CHB-MIT, and 0.952 vs. 0.918 on UPMC.
Although simulated combinations of anomalies could be more realistic, they may
not cover all possible anomalies in real EEGs and so the feature extractor could
be trained to extract features of only the limited simulated complex anoma-
lies. In contrast, with simple transformations, the feature extractor is trained to
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extract features which are discriminative enough between normal EEGs and sim-
ulated abnormal EEGs based on only abnormal frequency or amplitude features,
therefore more powerful and effective in extracting discriminative features.

Sensitivity Studies: The proposed task-oriented SSL strategy is largely insen-
sitive to the hyper-parameters for generating simulated abnormal EEGs. For
example, as shown in Fig. 4, when respectively varying the range [αl, αh] from
[2.0, 3.0] to [2.0, 7.0], the range [wl, wh] from [4, L/5] to [4, L], the range [ωl, ωh]
from [2, 3] to [2, 7], and the range [ω′

l, ω
′
h] from [0.1, 0.4] to [0.1, 0.8], the final

anomaly performance changes in a relatively small range and all of them are
clearly better than the baselilne methods. These results support that the pro-
posed task-oriented SSL strategy is quite stable in improving anomaly detection.

Fig. 4. Sensitivity study of hyper-parameters.

In addition, it is expected the proposed SSL strategy works stably even when
injecting incompatible transformations. For example, during training the feature
extractor, when a proportion (5%, 10%, 15%, 20%) of simulated abnormal EEGs
were replaced by fake abnormal EEGs (each fake EEG randomly selected from
real normal EEGs but used as abnormal), the AUC is respectively 0.927, 0.916,
0.898, and 0.883 on Internal, lower than original 0.954 but still kept at high level.

4 Conclusion

In this study, we propose a two-stage framework for anomaly detection in EEGs
based on normal EEGs only. The proposed task-oriented self-supervised learning
together with the two-branch feature extractor from the first stage was shown to
be effective in helping improve the performance of the anomaly detector learned
at the second stage. This suggests that although only normal data are available
for anomaly detection in some scenarios, transformation of normal data with
embedded key properties of anomalies may generate simulated abnormal data
which can be used to greatly help develop a more effective anomaly detector.
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