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Abstract. Successful application of deep learning often depends on
large amount of training data. However in practical medical image anal-
ysis, available training data are often limited, often causing over-fitting
during model training. In this paper, a novel data augmentation method
is proposed to effectively alleviate the over-fitting issue, not in the input
space but in the logit space. This is achieved by perturbing the logit
vector of each training data within the neighborhood of the logit vector
in the logit space, where the size of neighborhood can be automatically
and adaptively estimated for each training data over training stages.
The augmentations in the logit space may implicitly represent various
transformations or augmentations in the input space, and therefore can
help train a more generalizable classifier. Extensive evaluations on three
small medical image datasets and multiple classifier backbones consis-
tently support the effectiveness of the proposed method.
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1 Introduction

Deep learning techniques have been successfully applied to intelligent diagnosis
of various diseases [6,7,13]. In general, expert-level diagnosis from the intelligent
systems are often based on large set of annotated training data for each disease.
However, due to the existence of lots of rare diseases, costly and little time
resource from clinicians, privacy concerns, and difficulty in data sharing across
medical centres etc., annotated and publicly available large datasets for disease
diagnosis are very limited. As a result, practical investigations of intelligent
diagnosis often face the challenge of limited training data for model training.
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To alleviate the over-fitting issue due to limited training data for the current
task of interest, various approaches have been developed particularly for deep
learning models. One group of approaches are based on transferring knowledge
from a relatively large auxiliary dataset which contains different classes but in
content is often similar to the dataset of the current task. The auxiliary dataset
can be used to train and then fix a feature extractor for the current task, as in
the matching network [22], prototypical network [16], and relation network [18],
or to train a feature extractor which is then fine-tuned by the dataset of the
current task, as in the meta-learning methods MAML [8] and LEO [14], or to
jointly train a feature extractor with the dataset of the current task [24]. Such
transfer learning techniques assume that the auxiliary dataset is annotated and
similar to the dataset of the current task. However, large annotated auxiliary
medical image dataset is generally not available in the scenario of intelligent
diagnosis. Another group of approaches are based on various data augmenta-
tion techniques to increase the amount of the original training data. Besides the
conventional data augmentations like random cropping, scaling, rotating, flip-
ping, and color jittering of each training image, more advanced augmentation
techniques have been recently developed, including Mixup [27], Cutout [4], Cut-
mix [26], AutoAugment [2], and RandAugment [3]. All these augmentations are
performed directly on images and the types of basic augmentations (transforma-
tions) on images need to be manually designed. Besides data augmentation in
the input space, augmentation in the semantic feature space has also been pro-
posed [25], where various semantic transformations on images may be implicitly
realized by perturbing each feature vector along certain feature dimensions.

This study follows the direction of data augmentation for over-fitting allevi-
ation. Different from all the existing augmentations either in the input space or
in the feature space, the proposed novel augmentation is in the (classifier’s pre-
softmax) logit space. Perturbations of each data in the logit space can implicitly
represent various transformations in the input or feature space, and the aug-
mented data in the logit space can help train the classifier to directly satisfy the
desired property of generalizability, i.e., similar data in the logit space should
come from the same class. Innovatively, the magnitude of perturbation can be
adaptively estimated over the training process based on uncertainty for each
logit element, where the logit uncertainty is part of the classifier model output.
Experimental evaluations on multiple datasets with various classifier backbones
prove the effectiveness and generalizability of the proposed method.

2 Methodology

The objective is to train a generalizable classifier with limited available train-
ing data. Assume a classifier is represented by a convolutional neural network
(CNN), consisting of multiple convolutional layers (i.e., feature extractor) and
one last fully connected layer (i.e., classifier head). One desired property of any
generalizable classifier is that, two images should come from the same class if
their feature representations (i.e., feature vectors in the feature space) from the
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Fig. 1. Classifier training with augmentation in the logit space. Feature vector is
extracted from the input image and then forwarded to two parallel fully connected
layers to obtain the original logit vector and the uncertainty vector. Multiples samples
of logit vectors are then generated based on the combination of the original logit vector
and the uncertainty vector, with each sample fed to the softmax operator finally.

feature extractor output are similar enough. This property can be extended to
the output space (i.e., from the linear transformation of feature vector, also called
logit space) of the pre-softmax in the last fully connected layer. Most existing
data augmentation methods try to help classifiers satisfy this property during
classifier training indirectly by generating multiple transformed versions of the
same image and expecting the classifier to generate correspondingly similar fea-
ture vectors (and logit vectors). However, such data augmentations cannot assure
that similar feature or logit vectors would always come from the same class. With
this observation, we propose a simple yet effective augmentation method in the
logit space, directly helping classifier satisfy the property that similar logit fea-
ture vectors should come from the same class. Particularly, we propose training a
CNN classifier which can generate not only the conventional logit vector but also
the uncertainty for each logit element. Based on the logit and its uncertainty,
multiple logit vector samples for each single input image can be obtained.

2.1 Classifier with Logit Uncertainty for Data Augmentation

For the logit vector zi of any input image xi, suppose those logit vectors within
its neighborhood in the logit space correspond to similar input images in content.
Then sampling from the neighborhood would naturally generate multiple logit
vectors associating with various input data instances from the same class. By
enforcing the classifier to have same prediction for these sampled logit vectors
during training, the classifier would satisfy the desire property of generalizability.

The challenge for data augmentation in the logit space is to determine the size
of the neighborhood in the logit space for each input image. Manually setting a
fixed neighborhood size often results in undesirable augmentation effect without
considering the particular training data, training stage, and the employed CNN
classifier architecture. For example, the distribution of logit vectors for each
class of data may be spread in a much larger region in the logit space at the
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early training stage (when the classifier has not been well trained) than that at
the later training stage, or some training images of one class may be similar to
images of certain other class(es) while the other images in the same class not.
In these cases, it would be desirable if an adaptive neighborhood size can be
automatically determined for each training data at each training stage.

In this study, we propose applying the classifier with uncertainty estimate for
determination of neighborhood size for each training data. As demonstrated in
Fig. 1, the classifier head consists of two parallel fully connected layers, one layer
output representing the logit vector zi, and the other representing the uncer-
tainty σi of corresponding logit elements. During training, instead of feeding
the logit vector zi to the softmax operator as in conventional classifier, here the
classifier feeds multiple samples of logit vectors {ẑi,k, k = 1, . . . , K} around the
original zi, each generated by

ẑi,k = zi + εk � σi. (1)

εk is a vector whose element is randomly sampled from the uniform distribution
within the range [−1, 1], and � is the Hadamard (i.e., element-wise) product.
Note that the element in the uncertainty vector σi is not constrained to be non-
negative (although it should be in principle) considering that the negative sign of
any element in σi can be absorbed into the corresponding element in the random
vector εk. For each sampled logit vector ẑi,k, denote the corresponding classifier
output by ŷi,k which is the softmax output with ẑi,k as input, and the ground-
truth one-hot vector by yi for the original input image xi. Then, the classifier
can be trained with the training set {(xi,yi), i = 1, . . . , N} by minimizing the
cross-entropy loss L,

L =
1

NK

N∑

i=1

K∑

k=1

l(yi, ŷi,k) = − 1
NK

N∑

i=1

K∑

k=1

(
ẑi,k,c − log

C∑

c′=1

exp(ẑi,k,c′)
)
, (2)

where l(yi, ŷi,k) is the well-known cross-entropy function to measure the differ-
ence between yi and ŷi,k, which can be transformed to the format on the right
side of Eq. (2). ẑi,k,c is the c-th element in ẑi,k and c is the index associated
with the ground-truth class for the input xi, and C is the number of logit or
classifier output elements. At the early stage of classifier training, the classifier
has not been well trained and therefore the logit vector zi would often corre-
spond to undesired classifier output. In this case, the classifier would not be
prone to generate smaller uncertainty values in σi, because smaller uncertainty
would cause the multiple sampled logit vectors {ẑi,k, k = 1, . . . , K} often hav-
ing similar undesired classifier output as from zi. In contrast, at later training
stage when the classifier has been well trained, the classifier may correctly pre-
dict the class of the input xi based on the corresponding logit vector zi. This
generally would be associated with smaller uncertainty estimate, because larger
uncertainty would cause more varied logit vector samples {ẑi,k} and part of the
samples which are more different from zi could cause undesired classifier output.
Therefore, the logit uncertainty estimate can be automatically adapted during
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model training. The trend of uncertainty estimate over training process has been
confirmed in experiments (Sect. 3.3). Similar analysis can be performed for indi-
vidual training images xi’s, with harder images (i.e., prone to be incorrectly
classified) often associated with larger logit uncertainty. As a result, the uncer-
tainty logit estimate σi from the classifier can be naturally used to determine
the size of neighborhood around zi in the logit space, based on which multiple
samples in the neighborhood can be generated for each input image and used
for data augmentation during model training.

2.2 Comparison with Relevant Techniques

The multiple sampled logit vectors {ẑi,k} for each input image xi can be consid-
ered as the classifier logit outputs of various input images similar to the original
input xi, whether they correspond to the transformed versions of xi or different
instances (e.g., more lesion spots in images) from the same class. Therefore, the
data augmentation in the logit space is a generalization of existing augmenta-
tion strategies in the input data space [4,26–28], but without requiring manual
choice of augmentation types (e.g., various spatial transformations) as usually
used in the input data space. Our method can also be considered as an extension
of the data augmentation in the feature space [21,25]. However, augmentation
in feature space does not assure that similar logit vectors would come from
the same class. In addition, the general decreasing trend of uncertainty values
over training stages from our method reminds people of the traditional simulated
annealing technique for optimization [20]. From this aspect, the uncertainty esti-
mate in our method can be considered as the temperature parameters, tuning
the classifier training process such that the optimization is less likely trapped to
a poor local solution. Note that the classifier with uncertainty estimate has been
proposed previously [12] for uncertainty estimate of pixel classification. We used
the uncertainty estimate novelly for data augmentation to improve the perfor-
mance of classification with limited training data. Different from the method [12]
whose loss function is based on the difference between the ground-truth vector
and the mean vector of multiple output vectors, the loss function in our method
is based on the average of the differences between the ground-truth vector and
each output vector. Another difference is that our method adopts the uniform
sampling rather than Gaussian normal random sampling for sample generation.
Such differences cause significant performance improvement from our method.

3 Experiment

3.1 Experimental Setting

The proposed method was extensively evaluated on three medical image clas-
sification datasets, Skin40, Skin8, and Xray6. Skin40 is a subset of the 198-
disease skin image dataset [17]. It contains 40 skin diseases, with 60 images for
each disease. Skin8 is from the originally class-imbalanced ISIC2019 challenge
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dataset [1]. Based on the number (i.e., 239) of images from the smallest class,
239 images were randomly sampled from every other class, resulting in the Skin8
dataset. Xray6 is a subset of ChestXray14 dataset [23], containing six diseases of
X-ray images (Atelectasis, Cardiomegaly, Emphysema, Hernia, Mass, Effusion).
Based on the smallest class (i.e., Hernia) which has only 110 images, the same
number of images were randomly sampled from every other class, forming the
small-sample Xray6 dataset. Due to limited images for each dataset, a five-fold
cross-validation scheme was adopted, with four folds for training and another
fold for testing each time.

For model training on each dataset, each image was resized to 224 × 224
pixels after random cropping, scaling, and horizontal flipping. For testing, only
the same resizing was adopted. During model training, the stochastic gradient
descent (batch size 64) with momentum (0.9) and weight decay(0.0001) were
adopted. The initial learning rate 0.001 was decayed by 0.1 respectively on epoch
80, 100, 110. All models were trained for 120 epochs with observed convergence.
As widely adopted, the initial model parameters were from the pre-trained model
based on the natural image dataset Imagenet. Unless otherwise mentioned, the
number of samples K was set 5 (different numbers generally lead to similar
performance from the proposed method). The average and standard deviation
of classification accuracy over the five folds based on the five-fold cross-validation
scheme were used to evaluate the performance of each method.

3.2 Effectiveness Evaluation

The effectiveness of our method was evaluated by comparing with various data
augmentation methods, including the basic augmentation (random cropping +
scaling + flipping, ‘Basic’ in Table 1), Mixup [27], Manifold Mixup (MM) [21],
Dropblock (DB) [9], Cutmix [26], Cutout [4], and RandomErase (RE) [28]. The
originally proposed training loss for uncertainty estimate in the related study [12]
was also used as a baseline (‘UC’ in Table 1). The suggested hyper-parameter
settings in the original studies were adopted here. Note that the basic data
augmentation was used in all the baselines and our method by default. As Table 1
shows, our method outperforms all the data augmentation methods by a clear
margin (1%–4%) on all the three medical image classifications tasks, supporting
the better effectiveness of our method in alleviating the over-fitting issue. The
relatively smaller average accuracy and larger standard deviation on the Xray6
dataset might be due to the smaller dataset (totally 660 images) and the highly
inter-class similarity. The little performance improvement from the UC method
compared to the Basic method also confirms that the different formulation of the
loss function (based on individual augmented logit vector rather than mean logit
vector) in our method is crucial. Unexpectedly, some advanced augmentation
techniques like Mixup, MM, and RE did not perform better than the Basic
method. The fine-grained difference between different diseases in the medical
classification tasks might cause the failure of these augmentation techniques.

The effectiveness of our method is further confirmed with various model
backbones, including VGG16 [15], ResNet18 [10], ResNet50, SE-ResNet50 [11],
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Table 1. Comparison with existing data augmentation methods on three medical image
datasets. The model backbone is ResNet50.

Dataset Basic Mixup MM DB CutMix Cutout RE UC Ours

Skin40 73.54

(1.21)

73.67

(0.75)

73.38

(1.91)

73.37

(1.05)

74.29

(1.78)

74.33

(1.29)

73.58

(1.25)

73.38

(1.65)

76.13

(1.98)

Skin8 68.52

(2.14)

68.95

(3.14)

68.47

(1.27)

69.77

(3.10)

68.42

(1.81)

69.00

(2.05)

68.62

(1.31)

70.04

(2.87)

72.03

(1.75)

Xray6 51.22

(5.81)

48.18

(4.85)

50.73

(3.74)

51.73

(3.98)

51.21

(3.41)

51.36

(5.08)

50.61

(4.61)

51.82

(6.83)

52.61

(4.57)

Table 2. Performance comparison on different model backbones.

Backbone Skin40 Skin8 Xray6

Basic Cutout Ours Basic Cutout Ours Basic Cutout Ours

ResNet18 71.71

(1.77)

69.58

(1.06)

73.67

(2.10)

65.75

(2.43)

67.05

(0.67)

68.74

(2.88)

46.52

(2.42)

46.21

(3.12)

49.37

(2.38)

ResNet50 73.54

(1.21)

74.33

(1.29)

76.13

(1.98)

68.52

(2.14)

69.00

(2.05)

72.03

(1.75)

51.22

(5.81)

51.36

(5.08)

52.61

(4.57)

VGG16 72.63

(1.74)

72.71

(1.71)

74.92

(1.68)

68.42

(2.70)

70.62

(3.09)

72.29

(1.66)

53.36

(4.85)

48.18

(4.80)

54.34

(6.37)

SE-ResNet50 72.33

(1.30)

74.33

(1.23)

75.88

(1.88)

68.27

(4.32)

69.32

(1.18)

70.36

(2.81)

48.77

(5.39)

49.70

(4.63)

52.34

(7.31)

EfficientNet-

B3

69.67

(1.36)

69.54

(2.27)

75.42

(1.97)

68.11

(1.80)

67.28

(2.13)

70.98

(1.90)

50.96

(4.63)

47.42

(4.36)

54.08

(6.21)

ViT-B 224 74.71

(0.60)

75.38

(0.84)

77.38

(1.89)

67.16

(1.46)

67.38

(1.67)

69.73

(2.52)

43.18

(6.81)

44.21

(5.96)

45.30

(2.16)

EfficientNet-B3 [19], and the Transformer architecture ViT [5]. As shown in
Table 2, although the classification performance varies across model backbones,
our method consistently performs better than the representative baselines Basic
and Cutout on each model backbone. This also suggests that our method is not
limited to any specific model structure and can be applied to the training of
models with various architectures. Note that more advanced backbones (e.g.,
EfficientNet) did not always perform better than more basic backbones (e.g.,
VGG and ResNet50). This again might be caused by various factors such as the
fine-grained difference between different diseases, and the limited transferability
of backbones from natural image dataset to small medical dataset.

3.3 Model Component Choice and Effect of Hyper-parameters

Effect of Random Sampler: During model training, uniform random sam-
pler was adopted to generate multiple samples in the logit space based on each
training data. Compared to the samples from Gaussian normal random sampler,
samples from uniform random sampler are more varied within the neighbor-
hood of each original logit vector, and therefore may correspond to more differ-
ent augmentations in the input space. Since more augmentations can represent
more different training data, it is expected that uniform random sampler would
perform better than Gaussian normal random sampler in improving model per-
formance. This is confirmed with different model backbones on Skin40 (Fig. 2).
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Although samples from Gausian normal random sampler already increase the
model performance compared to basic data augmentation in the input space,
uniform random sampler helps further improve the performance consistently.

Fig. 2. Effect of random sampler (left) and sampling number K (middle and right).

Effect of Sampling Number K: While K was set 5 for all above experiments,
we expect different K would result in similar classification performance because
multiple iterations of training would equivalently generate various samples in
the logit space. As Fig. 2 (middle and right) shows, with the two backbones
SE-Resnet50 (middle) and Resnet18 (right) respectively, the performance of the
classifier is relatively stable with respect to the number of samples K and all are
clearly better than that from the Basic augmentation (‘Baseline’ in Fig. 2).

Effect of Uncertainty Estimate: Our method can directly estimate the uncer-
tainty of logit elements for each training data at each training stage, and we
expect the uncertainty decreases over training stages as analyzed in Sect. 2.1.
This is confirmed in Fig. 3, which shows that the average (absolute) uncertainty
over all training images generally decrease over training epochs. The adaptive
uncertainty estimate can help adjust the size of neighborhood for sampling over
training stages and training images. From Table 3, it is clear that automatic
and adaptive uncertainty estimate works consistently well, while fixed uncer-
tainty value even within the range of automatically estimated uncertainty (e.g.,
σ = 0.05, 0.15, 0.35) works well only on specific dataset with specific model back-
bone, supporting the necessity and effectiveness of adaptive uncertainty estimate
for data augmentation in the logit space.

Table 3. Effect of adaptive uncertainty estimate on classification performance.

Uncertainty σ Skin40 Skin8

ResNet18 ResNet50 SE-ResNet50 ResNet18 ResNet50 SE-ResNet50

Adaptive σ 73.67 76.13 75.88 68.74 72.03 70.36

Fixed σ = 0.05 73.79 74.08 75.54 69.01 71.35 70.35

Fixed σ = 0.15 73.45 76.20 74.92 68.36 70.99 69.47

Fixed σ = 0.35 73.38 75.67 75.87 68.31 72.08 69.62
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Fig. 3. Uncertainty estimate over training stages on Skin40 (left) and Skin8 (right).

4 Conclusion

To alleviate the over-fitting due to limited training data, a novel data augmenta-
tion method is proposed, not in the input or feature space, but in the logit space.
Experimental evaluations on multiple datasets and model backbones confirm the
effectiveness of the proposed method for improving classification performance. In
future work, the proposed method will be applied to more medical image analysis
tasks including imbalanced classification and classification on large datasets.
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