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Abstract. Intelligent diagnosis is often biased toward common diseases
due to data imbalance between common and rare diseases. Such bias
may still exist even after applying re-balancing strategies during model
training. To further alleviate the bias, we propose a novel method which
works not in the training but in the inference phase. For any test input
data, based on the difference between the temperature-tuned classifier
output and a target probability distribution derived from the inverse
frequency of different diseases, the input data can be slightly perturbed
in a way similar to adversarial learning. The classifier prediction for the
perturbed input would become less biased toward common diseases com-
pared to that for the original one. The proposed inference-phase method
can be naturally combined with any training-phase re-balancing strate-
gies. Extensive evaluations on three different medical image classification
tasks and three classifier backbones support that our method consistently
improves the performance of the classifier which even has been trained by
any re-balancing strategy. The performance improvement is substantial
particularly on minority classes, confirming the effectiveness of the pro-
posed method in alleviating the classifier bias toward dominant classes.
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1 Introduction

Deep learning has been widely applied to intelligent diagnosis of various diseases
from medical images [6,7,17]. The success of intelligent diagnosis often depends
on large annotated data for model training. However, while it is relatively easy
to collect and annotate large amount of data for commonly encountered diseases,
it is very challenging (if not impossible) to collect enough data for various rare
diseases. Such data imbalance across diseases in nature often causes diagnos-
tic bias toward common diseases by the intelligent system [1,11]. To improve
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the diagnostic performance of the intelligent system especially for those rare
diseases, it is crucial to investigate effective learning strategies which can help
the intelligent system successfully learn the features of both common and rare
diseases from the imbalanced disease dataset.

Multiple re-balancing approaches have been developed to alleviate the data
imbalance issue. Among them, data re-balancing and cost-sensitive re-weighting
have been well explored and commonly adopted. The basic idea of data re-
balancing is to use similar amount of data for each class to train the intelligent
system, either by over-sampling the limited data for the small-sample (minority)
classes [3,9] or under-sampling the data for larger-sample (dominant) classes [15].
One special over-sampling strategy especially for training deep learning mod-
els is data augmentation [23] which can generate almost unlimited transformed
data for minority (and dominant) classes. Different from the data re-balancing
strategies on the model input side, cost-sensitive re-weighting strategies adjust
the importance of loss terms in the loss function during model training, either at
the class level or at the instance (individual data) level. At the class level, setting
larger cost weight for minority classes has been widely adopted, where the weight
is inversely proportional to the class frequency [12,25]. At the instance level, the
weight for each individual training data can be adjusted based on the difficulty of
being correctly classified, with well-known techniques like boosting [3] or focal
loss [16]. Besides data re-balancing and cost-sensitive re-weighting strategies,
another set of strategies focus on the intelligent model itself, including transfer
learning and model ensembling which have become routine to improve classifi-
cation performance [25,26]. However, all these strategies can just alleviate the
data imbalance issue to some extent, in the sense that the well-trained model is
still more or less biased toward dominant classes during inference [14,28]. Recent
studies found that widely used strategies to handle data imbalance often down-
grade feature representation ability in the deep learning model, while the deep
learning model without adopting any re-balancing strategy has a more general-
izable feature extractor [28]. With this observation, it is proposed to first learn a
generalizable feature extractor regardless of data imbalance, and then the model
head for classification is re-trained with certain re-balancing strategy [2,14,28].

Different from the aforementioned approaches which alleviate the imbalance
issue in the training phase, this paper proposes a simple yet effective approach
which works not in the training phase but in the testing phase, aiming to fur-
ther alleviate the model’s prediction bias toward dominant classes if existing.
This is achieved by slightly perturbing the test data before fed to the model
based on a special single-data loss function. Different from adversarial attack
methods [4,8,19,21] which try to make models make wrong predictions, the pro-
posed approach here aims to alleviate the model bias toward dominant classes.
Extensive evaluations on multiple medical image datasets and model backbones
support that the proposed approach, built on models trained with various re-
balancing strategies, is effective in further improving the classification perfor-
mance particularly on minority classes.
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2 Methodology

Fig. 1. Demonstrative procedure of our method. Circled number indicates the order
of processing or corresponding signal flow. During inference, perturbation is computed
based on gradient of a difference measure function over input pixels, and then the
perturbed input is fed to the CNN model to obtain the final prediction.

The goal of this study is to improve the performance of any classifier trained
on an imbalanced dataset, such that the classifier is less biased toward domi-
nant classes in prediction. Different from most existing methods which focus on
the classifier training phase, our method focuses on the testing (i.e., inference)
phase. Given any classifier already well-trained on the imbalanced dataset and
one test data to be classified, the intuitive idea of our method is to perturb
the test data such that the classifier would be slightly inclined toward minority
classes during inference. While such perturbation could downgrade the classi-
fication performance on dominant classes, it largely improves the performance
on minority classes and the overall classification performance. The classification
improvement on minority classes is crucial especially when missing diagnosis of
rare diseases would cause serious consequence for patients.

The proposed approach is demonstrated in Fig. 1. Consider a convolu-
tional neural network (CNN) classifier well trained based on an imbalanced
dataset, where the number of training data for the c-th class is denoted by
nc, c ∈ {1, 2, . . . , C}. Assume the classifier predictions over multiple test data
are statistically biased toward dominant classes due to imperfect model train-
ing with the imbalanced training dataset. Then, for any test data x and the
correspondingly original probability distribution output p of the classifier, the
higher probability prediction in p would be likely biased toward the dominant
classes. To alleviate such prediction bias, one naive way is to manually decrease
the probability predictions by certain amount for dominant classes and increase
the probability predictions by certain amount for minority classes. However, it
would be very challenging and ad-hoc to manually determine the amount of
prediction adjustment for each class. In this study, inspired by the strategy of
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generating adversarial examples, we propose a strategy to automatically perturb
the input data x such that the classifier output p̃ for the perturbed input x̃ is
slightly biased toward minority classes compared to the original output p.

As in adversarial learning for adversarial example generation, a specific loss
function with classifier input as variables needs to be designed. Here, the tem-
perature scaling for the softmax operation of the CNN classifier and the prior
frequency distribution {nc}Cc=1 over classes are employed to help design the loss
function and subsequently perturb the classifier input. Suppose the softmax
input (i.e., logit) vector is z = [z1, z2, . . . , zC ]T for the classifier input x. Temper-
ature scaling modifies the softmax function by including the temperature scaling
parameter T ∈ R

+, i.e.,

p̂c =
exp(zc/T )

∑C
k=1 exp(zk/T )

, (1)

where p̂c is the c-th element of the temperature-tuned classifier output p̂ =
[p̂1, p̂2, . . . , p̂C ]T. By setting a large temperature value (e.g., T = 1000), p̂c’s
will become approximately equivalent to each other (e.g., p̂c ≈ 1/C), but note
that each p̂c is a function of the classifier input x no matter which value T
is set. With the almost-known output p̂ thanks to a large temperature value,
the difference between p̂ and any specific target vector p∗ would always exist
if p∗ �= p̂. With appropriate target p∗, the difference between p̂ and p∗ can be
used to help perturb the classifier input in analogy to the well-known adversarial
learning strategy. Considering that the objective of input perturbation is to bias
the classifier output slightly toward minority classes, the target vector p∗ =
[p∗

1, p
∗
2, . . . , p

∗
C ]T is designed as

p∗
c =

g(nc)
∑C

k=1 g(nk)
, (2)

where g(nc) is a scalar function of the inverse frequency nc. In this study, g(nc) =
log(M/nc), with M being a relatively larger constant such that g(nc) is non-
negative for all classes (M was set to the number of training data from the
largest class in experiments). The logarithmic function was adopted here such
that the discrete probability distribution p∗ is smoother across classes, which in
turn would help cause smaller bias toward the minority classes. It can be seen
that p∗

c is relatively larger (p∗
c > 1/C) for minority classes and smaller (p∗

c <
1/C) for dominant classes. The difference between the temperature-tuned output
p̂c (≈ 1/C) and the target output p∗

c is limited to a relatively smaller range
(−1/C, 0) for dominant classes and a larger range (0, 1−1/C) for minority classes.
Therefore, the overall difference between p̂ and p∗ is dominated by the minority
classes. This indicates that perturbing the classifier input based on the overall
difference between p̂ and p∗ would change the pre-softmax logits more largely for
minority classes (i.e., larger increasing in logits) than for dominant classes (i.e.,
smaller decreasing in logits). As a result, slightly drawing the classifier output p̂
closer to the target p∗ by perturbing the classifier input would bias the classifier
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prediction slightly toward minority classes compared to the original prediction.
With an appropriate difference measure �(p̂,p∗) (e.g., cross entropy) which is
essentially a function of the classifier input, the perturbed classifier input x̃ can
be obtained by the signed gradient of �(p̂,p∗) over input x [8], i.e.,

x̃ = x − ε · sign(∇�(p̂,p∗)) , (3)

where ε is a scalar constant controlling the maximum perturbation on each data
element (e.g., image pixel), ∇�(p̂,p∗) is the gradient of difference measure (i.e.,
loss) function over the classifier input, and sign(·) is the pixel-wise sign function.
Once the perturbed input x̃ is obtained, it can be fed to the classifier to get the
final output p̃, in which the class with the maximum output is considered as the
final prediction for the original input x.
Comparison with Relevant Studies: Our method can be considered as one
type of post-hoc logit adjustment during inference [18]. In contrast to the post-
hoc logit adjustment at the output side of the classifier model [18,22], our method
adjusts the logit by perturbing the model input. In addition, since our method
is applied during inference, it can be naturally combined with existing methods
which focus on classifier training, and the combinations would often improve the
classification performance compared to those original methods.

3 Experiments

3.1 Experimental Settings

The proposed method was extensively evaluated on three imbalanced medical
image datasets, Skin7 [5], OCTMNIST [27], and X-ray6 (Table 1). Specially, X-
ray6 contains six diseases of X-ray images (Atelectasis, Cardiomegaly, Emphy-
sema, Hernia, Mass, Effusion), where the six classes were selected from the origi-
nal 14-class dataset ChestX-ray14 [24] by removing those classes of images which
may contain multiple or ambiguous diseases in single images. Although dataset
scale varying a lot, all three datasets present clear data imbalance (Table 1, last
column). For OCTMNIST, all the images were used for model training, and an
additional set of images (250 per class) officially provided were used for testing.
For Skin7 and X-ray6, a five-fold cross-validation scheme was adopted, with four
folds for training and another fold for testing each time.

Table 1. Dataset statistics. Last column: imbalance ratio = image number in the
largest classes divided by image number in the smallest class.

Dataset ImageType #Class ImageSize #SmallestClass #LargestClass Imbalance

Skin7 Dermoscopy 7 600 * 450 115 6705 58.3

OCTMNIST OCT 4 28 * 28 7754 46026 5.9

X-ray6 X-ray 6 1024 * 1024 88 3368 38.3
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Since our method was applied to a well-trained classifier model, an convo-
lutional neural network (CNN) classifier needs to be trained in advance, either
using certain re-balancing strategy or not. In experiments, three CNN backbones
pre-trained on ImageNet were used, including ResNet50 [10], MobilenetV2 [20],
and DenseNet169 [13]. All experiments are conducted on a single 2080Ti GPU.
For model training, Skin7 images were resized to 300×300 and randomly cropped
to 224 × 224 pixels, followed by a random horizontal flip, while X-ray6 images
were resized to 224× 224 pixels and OCTMNIST images were resized to 32× 32
pixels followed by random horizontal flip. For testing, only similar resizing oper-
ation was performed for each test image. During model training, the stochastic
gradient descent with momentum (0.9) and weight decay (0.0005) were adopted.
The batch size was set 32 on Skin7 and X-ray6, and 128 on OCTMNIST.
The learning rate was set 0.01 for MobilenetV2 and 0.001 for ResNet50 and
DenseNet169, which was then decayed by 0.1 after every 50 epochs. Linear warm-
up of learning rate was used in the first epoch. All models were trained for 200
epochs with clear convergence. During testing, unless otherwise mentioned, the
difference measure �(p̂,p∗) was based on the cross-entropy loss. The temperature
T was set 1000, and the constant ε was set 0.001 on Skin7 and OCTMNIST and
0.0001 on X-ray6, based on an extra small validation set for each dataset on the
ResNet50 backbone. Because of the imbalance property in testing for Skin7 and
X-ray6, the mean class recall over all classes (MCR) and the recall on the small-
est class (SCR) were used for evaluation. The standard deviation of MCR and
SCR over the five folds (with five-fold cross validation) were also reported when
evaluated on the Skin7 and X-ray6 datasets. Note that the proposed method is
only slightly slower than corresponding baseline during inference, e.g., with the
average inference time 0.283 s per image by the proposed method versus 0.107 s
by the corresponding baseline.

3.2 Effectiveness and Generalizability Evaluation

The effectiveness of our method was extensively evaluated by comparing with
the widely used strategies to handle data imbalance, including the data re-
sampling (RS) for class-balanced mini-batch, the class-level re-weighting (RW),
the instance-level re-weighting with focal loss (FL) [16], and the recently pro-
posed state-of-the-art methods, including the two-stage deferred re-sampling
(DRS) [28] and the margin-based method LDAM with deferred re-weighting [2].
The model trained with conventional cross-entropy loss (CE) (i.e., without using
any re-balancing strategy) was also used for comparison.

From Table 2, it can be observed that, although the performance varies across
baselines on each of the three datasets, our method (built on the model trained
by the baseline method) always performs better than the corresponding baseline
when measured by MCR for all classes. Importantly, the performance boosting on
the smallest class is much more significant than for all classes, as seen in the SCR
columns. Detail performance on each Skin7 class from Fig. 2 also shows that our
method obtains substantial improvement on small classes, although with certain
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Fig. 2. Performance comparison with corresponding baseline (CE and RS) on each
Skin7 class with ResNet50 backbone. X-axis: 1 for the largest class and decreasingly 7
for the smallest class.

decreased performance on dominant classes as often observed from state-of-the-
art methods (e.g., LDAM [2]). These results clearly support that our method is
effective in alleviating the model’s bias toward dominant classes when the model
was trained on imbalanced dataset with or without any re-balancing training
strategy. Note that the larger variance of SCR than that of MCR on the X-ray6
and Skin7 datasets is probably due to the relatively smaller testing images on
the smallest classes (only 22 and 23 images in each fold for the smallest class).
Interestingly, some re-balancing baselines (e.g., RS, FL) performed worse than
the plane cross-entropy baseline (CE). This may be due to the heavy imbalance
in the datasets which cannot be well addressed with those re-balancing strategies.
However, the inclusion of our method during inference consistently improves the
performance of all the models trained with different strategies.

Table 2 also suggests that our method has desired generalizability. Our
method consistently improves the performance particularly on minority classes
for multiple classification tasks (Skin7, OCTMNIST, X-ray6), in combination
with various re-balancing strategies (RW, DRS, LDAM, etc.), and with differ-
ent classifier backbones (ResNet50, MobileNetV2, and DenseNet169). Because
of its simple and independent operation on the inference phase, our method is
expected to work well for more types of tasks and on various model architectures.

3.3 Robustness to Hyper-parameters

Our method is robust to the choice of perturbation magnitude ε. As shown in
Fig. 3 (left and middle), when ε is smaller enough (e.g., in the range (0, 0.001]),
our method performs consistently better than the corresponding baseline (with
ε = 0 on the curve), no matter which baseline and CNN backbone is used. From
this figure, we can also see that the best choice of ε varies when our method
is combined with different baselines. This also indicates that the previously
reported performance (Table 2) of our method on the Skin7 dataset is indeed
conservative, where ε = 0.001 (not the best choice in most cases) was adopted in
all comparisons. Actually, from Fig. 3 (middle), it can be expected that consis-
tently better performance than reported in Table 2 would be obtained if setting
ε smaller (e.g., 0.0005) when combining our method with most baselines on the
MobileNetV2 backbone.
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Table 2. Comparison with various baselines on multiple datasets with different CNN
backbones. Standard deviation of MCR & SCR are in brackets for Skin7 and X-ray6.

Model Method Skin7 OCTMNIST X-ray6

MCR SCR MCR SCR MCR SCR

ResNet50 CE 84.54(0.86) 75.66(6.63) 75.60 26.40 58.77(2.63) 40.00(15.56)

CE+ours 86.42(1.29) 84.36(5.00) 77.20 43.60 59.81(2.39) 43.64(14.59)

RS 83.23(1.36) 73.04(9.95) 78.70 37.60 57.90(2.06) 34.56(13.11)

RS+ours 86.34(1.11) 81.76(7.14) 78.90 52.40 58.82(1.98) 37.28(14.18)

RW 85.03(0.97) 74.78(8.43) 76.00 28.40 62.17(0.76) 53.64 6.68

RW+ours 87.82(1.10) 87.83(5.07) 78.10 43.20 62.89(1.43) 56.36(7.39)

FL 83.10(0.94) 73.92(6.88) 74.80 23.20 57.69(2.42) 33.64(9.43)

FL+ours 85.90(1.50) 86.12(4.75) 77.60 38.80 58.23(2.38) 34.56(9.43)

DRS 84.12(1.46) 75.66(9.00) 79.20 39.20 54.85(2.20) 30.00(9.43)

DRS+ours 86.37(0.81) 84.36(5.00) 80.60 61.20 56.42(2.54) 32.72(11.31)

LDAM 83.48(1.47) 73.94(9.73) 79.60 40.00 59.44(2.69) 41.82(13.03)

LDAM+ours 84.81(0.92) 79.12(9.92) 81.60 54.40 60.04(2.69) 51.82(10.44)

MobileNetV2 CE 84.46(2.05) 77.40(8.37) 76.40 25.20 56.44(1.20) 26.36(8.77)

CE+ours 85.56(1.54) 88.70(3.87) 77.60 45.20 57.22(1.28) 29.10(11.43)

RS 82.42(1.42) 66.98(11.36) 76.20 27.60 56.58(1.64) 30.92(5.92)

RS+ours 86.07(0.78) 84.36(7.87) 78.40 45.60 59.30(2.20) 41.82(8.72)

RW 85.75(0.91) 80.00(4.43) 77.70 32.40 60.70(1.82) 50.00(11.85)

RW+ours 85.96(1.33) 90.43(3.25) 78.20 52.40 61.74(1.76) 53.64(10.52)

FL 84.23(1.40) 76.54(10.05) 77.10 35.20 57.24(1.96) 35.46(9.90)

FL+ours 84.81(0.99) 89.58(5.00) 79.20 51.60 58.10(2.32) 38.18(10.95)

DRS 84.80(1.52) 78.26(8.72) 77.80 32.80 54.41(1.44) 25.46(10.49)

DRS+ours 85.73(1.57) 88.70(3.87) 78.40 56.00 56.07(1.00) 29.10(8.25)

LDAM 83.63(1.05) 76.54(10.01) 80.90 48.00 60.25(3.65) 17.26(16.84)

LDAM+ours 84.42(0.61) 82.64(7.52) 82.70 64.00 60.70(3.59) 36.36(23.40)

DenseNet169 CE 84.92(1.10) 76.56(9.54) 73.90 21.60 60.74(2.18) 40.92(11.58)

CE+ours 86.20(1.72) 86.98(6.86) 76.10 36.00 61.44(2.43) 41.84(11.76)

RS 82.43(1.48) 69.56(9.75) 75.20 23.60 58.86(2.27) 36.38(14.35)

RS+ours 85.33(1.67) 79.14(7.14) 78.00 38.40 60.17(1.86) 40.90(11.57)

RW 84.50(0.68) 76.52(7.58) 75.50 20.40 63.68(1.88) 53.64(11.28)

RW+ours 86.48(0.85) 84.35(8.95) 77.40 38.00 64.44(2.04) 56.36(10.98)

FL 84.00(1.73) 80.00(3.87) 75.10 20.00 59.46(2.75) 40.00(12.21)

FL+ours 85.64(1.23) 87.84(3.61) 78.80 34.80 60.53(2.14) 43.64(8.86)

DRS 83.53(1.82) 71.32(10.00) 73.70 23.20 57.95(2.39) 35.46(12.61)

DRS+ours 85.81(1.22) 82.64(7.55) 75.00 40.40 59.26(2.29) 39.10(13.08)

LDAM 83.71(1.46) 72.18(12.54) 81.60 46.40 62.14(4.76) 44.54(17.83)

LDAM+ours 85.77(1.00) 82.62(8.15) 83.40 63.20 62.61(4.54) 46.36(17.58)

The robustness of our method to the temperature scaling T is demonstrated
in Fig. 3 (right). It shows that our method would work stably better than corre-
sponding baselines when T is larger than 100. This also confirms the effectiveness
of the temperature scaling at a larger value. In addition, besides the cross-entropy
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loss for the difference measure �(p̂,p∗), some other choices including the mean
squared error and focal loss were also tried for �(p̂,p∗), resulting in equivalent
performance compared to that from the cross-entropy loss.

Fig. 3. Robustness to hyper-parameters. Left & middle: performance of our method
with varying perturbation ε respectively on ResNet50 & MobileNetV2. Right: with
varying temperature T on ResNet50 (dashed curves for corresponding baselines). Dif-
ferent curves for combinations of ours with different baselines. Skin7 was used here.

4 Conclusion

Here we propose a simple yet effective method to alleviate the data imbalance
issue not during model training but during inference. The natural combina-
tion of our method with existing methods further alleviates the classifier’s bias
toward dominant classes, as supported by extensive evaluations on three medi-
cal datasets with different data-imbalance methods and model backbones. The
applications of our method to more tasks like lesion detection will be explored.
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