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Abstract. Current deep learning models are characterised by catas-
trophic forgetting of old knowledge when learning new classes. This poses
a challenge in intelligent diagnosis systems where initially only training
data of a limited number of diseases are available. In this case, updat-
ing the intelligent system with data of new diseases would inevitably
downgrade its performance on previously learned diseases. Inspired by
the process of learning new knowledge in human brains, we propose a
Bayesian generative model for continual learning built on a fixed pre-
trained feature extractor. In this model, knowledge of each old class can
be compactly represented by a collection of statistical distributions, e.g.
with Gaussian mixture models, and naturally kept from forgetting in
continual learning. Experiments on two skin image sets showed that the
proposed approach outperforms state-of-the-art approaches which even
keep some images of old classes during continual learning of new classes.

Keywords: Continual learning · Bayesian model · Generative
approach

1 Introduction

Deep learning models, particularly convolutional neural networks (CNNs), have
shown human-level performance in diagnosis of various diseases [1,6,12]. How-
ever, most intelligent diagnosis systems are limited to diagnosis of only one or
a few diseases and cannot be easily extended once deployed, therefore cannot
diagnose all diseases of certain tissue or organ (e.g., skin or lung) as medical spe-
cialists do. Since collecting data of all (e.g., skin or lung) diseases is challenging
due to various reasons (e.g., privacy and limited data sharing), it is impractical
to train an intelligent system diagnosing all diseases all at once. One possible
solution is to make the intelligent system have the continual or lifelong learning
ability, such that it can continually learn to diagnose more and more diseases
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without resourcing (or resourcing few) original data of previously learned dis-
eases [3]. However, current intelligent models are characterised by catastrophic
forgetting of old knowledge when learning new classes.

Researchers have recently tried to reduce the catastrophic forgetting issue
mainly in the natural image domain. One approach is to find model components
(e.g., kernels in CNNs) crucial for old knowledge, and then try to change them
as little as possible when learning new knowledge [9]. However, it would become
increasingly more difficult to continually learn new knowledge because more and
more kernels in CNNs become crucial for increasingly old knowledge. To make
models more flexibly learn new knowledge, another approach tries to modify
model structures by add new layers or kernels when learning new knowledge [16].
Knowledge distillation has also been widely used during learning new classes [4,7,
8,10,11,14], where the old knowledge is implicitly represented by soft outputs of
the old classifier with stored small old images or new classes of images as inputs.
An alternative approach is to train a generative model to produce enough number
of synthetic training data for each old class when learning new classes [19,20].

However, almost all existing approaches modify the feature extraction part of
the classifiers either in parameter values or in structures during continual learn-
ing of new classes. In contrast, humans seem to learn new knowledge by adding
memory of the learned new information without modifying the (e.g., visual)
perceptual pathway. Therefore, one possible cause to catastrophic forgetting in
existing models is the change in the feature extraction part (corresponding to
the perceptual pathway in human brains) when learning new knowledge. With
this consideration, we propose a generative model for continual learning built on
a fixed pre-trained feature extractor, which is different from all existing (discrim-
inative) models. The generative model can naturally keep knowledge of each old
class from forgetting, without storing original images of old classes or regenerat-
ing synthetic images during continual learning. Experiments on two skin disease
classification tasks showed the proposed approach outperforms state-of-the-art
approaches which even keep some images of old classes during continual learning.

2 A Generative Model for Continual Learning

The proposed method is inspired by two interesting findings in neuroscience.
One finding is that most infants cannot form episodic memory before 3 years
old [2,17], and the other finding is that humans continually form memory from
infants to elderly people [13]. One hypothetical explanation is that the visual
pathway in younger infant’s brain might be rapidly changing with daily visual
stimuli from surroundings and then become firm with little change since 3 years
old or so. Humans can continually learn new visual knowledge through their
whole lives probably because they formed new memories about the new knowl-
edge, but without changing the visual pathway which works as a visual fea-
ture extractor. This could explain why current deep learning models are char-
acterised by catastrophic forgetting of old knowledge, i.e., model parameters
or model structures from the the feature extractor part are always changed to
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some extent in almost all continual learning approaches. With this consideration,
we propose a human-like continual learning framework, i.e., first pre-training a
feature extractor, then fixing the feature extractor and forming new memory
for each new knowledge. In the following, we will introduce one general way to
pre-train the feature extractor, one statistical method to represent the memory,
and one Bayesian model to predict class of any new (test) data after continual
learning each time.

Fig. 1. Fixed pre-trained feature extractor (top) and memory formation (middle to
bottom). Feature extractor is pre-trained and fixed during continual learning. Memory
of each class is represented by a set of statistical distributions over features.

2.1 Fixed Pre-trained Feature Extractor

An ideal feature extractor should output two different feature vectors if two
input data were visually different, meanwhile visually more similar inputs should
result in more similar feature vectors from the feature extractor. The visual fea-
ture extractor (i.e., visual pathway) in younger infants are probably taught in
certain self-supervised way, although the mechanism of self-supervision in infant
brain has not been explicitly understood [15]. While it is worth exploring var-
ious self-supervised learning approaches (e.g., auto-encoder) to train a feature
extractor, here we leave the self-supervision exploration for future work, and
adopt a simpler but widely used approach, i.e., pre-training a CNN classifier
with relatively large number images whose classes or domains are relevant but
different from those in the task of interest, and then using the pre-trained CNN
feature extractor (often consisting of all the convolutoinal layers) for the contin-
ual learning classification task of interest (Fig. 1, top row). It is expected that
the pre-trained feature extractor would probably be powerful enough to discrim-
inate different input images from the task of interest. Experiments showed that
even such a simple approach to a fixed pre-trained feature extractor can already
significantly help reduce catastrophic forgetting of old knowledge with the pro-
posed generative approach. It is worth noting that, during continual learning of
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new classes in the classification task of interest, the pre-trained feature extractor
is fixed and not updated. The knowledge of each learned new class is represented
and stored as described in the following subsection.

2.2 Memory Formation

Different from the state-of-the-art continual learning approaches which often
store a small number of original images for each old class, the proposed app-
roach stores not original images but the statistical information of each class
based on the feature extractor outputs of all training images belonging to the
class. Here, each element of the output feature vector is assumed to represent
certain type of visual feature. Then based on the class of training images, the
distribution of each feature is estimated and collected together to form the mem-
ory of the knowledge of the specific class (Fig. 1, second to bottom rows). For-
mally, denote by Dc = {xi, i = 1, . . . , Nc} the set of training images for class
c, zi = [zi1, zi2, . . . , zik, . . . , ziK ]T the L2-normalized output feature vector from
the feature extractor for the input image xi, and f = [f1, f2, . . . , fk, . . . , fK ]T the
vector of random variables representing the output of the feature extractor, then
the statistical distribution of the k-th feature fk for class c can be represented
by a probability density distribution p(fk|c,Dc),

p(fk|c,Dc) = g({zik, i = 1, . . . , Nc}) , ∀ k ∈ {1, . . . ,K} (1)

where g(·) could be any appropriate distribution estimator. Here a Gaussian
mixture model (GMM) with a small number of S components is adopted to
represent g(·) for its simplicity. Since each Gaussian component can be compactly
represented by its mean and standard deviation, totally only 2 · S · K numbers
are stored in the memory to represent the knowledge of each class. Dc would be
omitted from p(fk|c,Dc) in the following for simplicity.

2.3 Bayesian Model for Prediction

Based on the statistical distributions of visual features for each class, we propose
a generative classification model based on the Bayesian rule for prediction. Given
a test image xj , denote by zj = [zj1, zj2, . . . , zjk, . . . , zjK ]T the corresponding
output from the feature extractor, and p(c|zj) the probability of the test image
belonging to class c. Then based on the Bayes rule, we can get

p(c|zj) =
p(zj |c) · p(c)

∑M
m=1 p(zj |m) · p(m)

, (2)

where M is the number of classes learned so far. Considering that potential
correlations between certain feature components are probably caused by co-
occurred visual parts of a specific class of objects, it can be assumed that different
feature components fk’s are conditionally independent given specific class c.
Then, the logarithm of Eq. 2 gives

log p(c|zj) =
∑

k

log p(fk = zjk|c) + log p(c) − α , (3)
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where α = log
∑

m p(zj |m)p(m) can be considered a constant for different
classes. In Eq. (3), the likelihood function value p(fk = zjk|c) for each feature ele-
ment k can be directly obtained based on the previously stored knowledge p(fk|c)
(Eq. 1) in the memory. The prior p(c) for class c can be simply estimated based
on the ratio of the number of training images for this class over the total number
of training images of all learned classes so far, i.e., p(c) = Nc/

∑
m Nm. Note that

in this case, the number of training images for each class needs to be stored in
the memory such that p(c) can be easily updated when new classes’ knowledge
is learned as above (Eq. 1). Based on Eq. (3), the class of the test image xj

would be directly predicted as the one with the highest value of log p(c|zj) over
all classes learned so far.

The advantages of the the proposed approach over existing continual learning
approaches are obvious. First, the knowledge of each old class is statistically
represented by the set of likelihood functions (Eq. 1) and compactly stored in the
memory. Therefore, old knowledge will not be forgotten over continual learning
of new classes. In comparison, old knowledge will be inevitably and gradually
forgotten over multiple rounds of continual learning in existing approaches, either
due to the changes in feature extractor or due to the reduced number of original
images to be stored in the limited memory. Second, the final performance of the
proposed approach over multiple rounds of continual learning is not affected by
the number of learning rounds and the number of new classes added in each
round. In contrast in existing approaches, more rounds of continual learning
with smaller number of new classes added each time would often lead to worse
classification performance. Therefore, the proposed approach is more robust to
various learning conditions with little forgetting of old knowledge.

3 Experimental Evaluations

3.1 Experimental Setup

The proposed approach was extensively evaluated on two medical skin image
datasets. Skin7 [5] is a skin lesion dataset from the challenge of dermoscopic
image classification held by the International Skin Imaging Collaboration (ISIC)
in 2018. It consists of 7 disease categories, and each image is of size 600 × 450
pixels. This dataset presents severe class imbalance, with the largest class 60
times larger than the smallest one. Skin40 is a subset of 193 classes of skin
disease images collected from the internet [18]. Skin40 contains two types of
images, dermoscopic images which have relatively consistent imaging conditions
(e.g., similar illumination) and therefore low levels of imaging noise, and clinical
images captured mostly with digital cameras or mobile phones. The 40 classes
with relatively more number of images (60 images per class) were chosen from
the 193 classes to form the Skin40 dataset, while the remaining 153 classes (10 to
40 image per class) were used to train a CNN classifier whose final classification
layer was then removed to form the fixed feature extractor for our approach or to
be used as tunable feature extractor for baseline methods in most experiments. It
is worth noting that there is no overlap between the 153 classes (for training the
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feature extractor in advance) and the classes in Skin7 and Skin40 (for continual
learning evaluation).

During feature extractor training based on the 153 skin image classes, each
image was randomly cropped within the scale range [0.8, 1.0] and then resized
to 224 × 224 pixels, followed by random horizontal and vertical flipping. The
mini-batch stochastic gradient descent (batch size 32) was used, with initial
learning rate 0.01 and then divided by 10 at the 35th, 70th, and 105th epoch
respectively. Weight decay (0.0005) and momentum (0.9) were also applied. The
feature extractor was trained for 120 epochs with observed convergence.

In each experiment, multiple rounds of continual learning were performed,
with a few (e.g., 2, 5) new classes learned each time. After each round of continual
learning, the mean class recall (MCR) over all classes learned so far was calcu-
lated. The mean and standard deviation of MCR over five runs were reported,
where the five orders of classes to be continually learned were fixed and used in
all methods. Unless otherwise mentioned, ResNet-101 was used as the backbone
for the feature extractor, and the dimension of feature vector K was 2048 and
the number of Gaussian components in each GMM model was empirically set to
2 based on a small validation set for each dataset.

3.2 Effectiveness of the Generative Model

This section evaluates the effectiveness of the proposed approach by comparing
with state-of-the-art strong baselines, including iCaRL [14], End-to-End Incre-
mental Learning (End2End) [4], learning a Unified Classifier Incrementally via
Rebalancing (UCIR) [8], Distillation and Retrospection (DR) [7], and Learning
without Forgetting (LwF) [10]. The suggested hyper-parameter settings in the
original work were adopted. In each round of continual learning, for the iCaRL,
End2End, DR, and UCIR which need certain number of old data, the number
of images stored (i.e., memory size) for all old classes is respectively 50 for Skin7
and 100 for Skin40. The memory size was chosen such that stored number of
images for each class was only a small portion of the original training images
at the last round of learning. An upper-bound result was also reported (Fig. 2,
green star) by training a non-continual classifier with all training data.

Figure 2 shows that, with certain number of new classes to be continually
learned at each round, the proposed approach always performs better than all
the strong baselines particularly at later round of continual learning, although
the same pre-trained feature extractor was used to fine-tune the CNN classifier
for each baseline method. Even with more images of old classes stored for the rep-
resentative strong baseline iCaRL, the proposed approach still performs better
(Fig. 2, second row, last). The results also tell us the final-round performance of
the proposed approach is not affected by the number of new classes to be learned
each time. In comparison, the final performance of each baseline becomes worse
with smaller number of new classes to be learned each time. These results clearly
support that the proposed approach is more effective in keeping old knowledge
from forgetting.
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Fig. 2. Performance comparison on Skin40 and Skin7. First row (from left): learning
2, 5, 10 classes each time on Skin40. Second row (from left): learning 1 and 2 classes
each time on Skin7, and comparison with iCaRL with varying memory size on Skin40.
X-axis in each sub-figure represents the accumulated number of learned classes in the
corresponding continual learning task.

Table 1. Performance on various feature extractor backbones. Results after last round
of continual learning were reported, with 1 (Skin7) or 5 (Skin40) new classes per round.

Dataset VGG19 ResNet18 ResNet34 ResNet101

LwF iCaRL IR Ours LwF iCaRL IR Ours LwF iCaRL IR Ours LwF iCaRL IR Ours

Skin7 18.9 39.7 38.3 46.5 19.8 44.3 46.2 55.6 20.1 46.9 48.3 56.8 21.0 48.5 50.0 58.4

Skin40 27.4 33.6 32.5 52.8 30.4 41.8 37.1 61.9 31.1 42.3 39.5 62.8 31.2 43.1 40.2 63.1

3.3 Generalizability and Robustness of the Generative Model

The proposed approach is a general framework and therefore can employ dif-
ferent feature extractor backbones. As Table 1 shows, the proposed approach
performs consistently better than strong baselines with different feature extrac-
tor backbones, supporting that the proposed approach is not limited to specific
feature extractor structures. To evaluate the robustness of the generative model,
the GMM with varying number of Gaussian components and different orders of
classes to be continually learned were tried during continual learning. Figure 3
clearly shows that the generative model works stably well with different num-
ber of Gaussian components in GMM and with different class orders, with little
change in performance. In comparison, the performance of the representative
iCaRL varied a lot with different class orders. This is because knowledge of each
old class is compactly stored and not changed throughout the whole process of
continual learning by our approach. In comparison, all the strong baselines mod-
ify the feature extractor during continual learning, which would then change the
representation of each stored old data and further change the representation of
old knowledge, differently with different orders of classes to be learned.
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Fig. 3. Robustness of the proposed approach. Left: stable performance with varying
GMM components on Skin40. Right: final-round learning performance with different
class orders (x-axis indices for different sets of class orders on Skin40). Five new classes
were continually learned per round.

Fig. 4. Effect of feature extractor on continual learning. More classes (x-axis) used to
train feature extractor result in better performance on Skin7 (left) and Skin40 (right).

3.4 Effect of Feature Extractor

The proposed approach is based on a fixed pre-trained feature extractor. To
confirm that better feature extractors would help the generative model perform
better in continual learning, the original 153 classes of skin images used for
training the feature extractor were reduced gradually to only 10 classes, each
time using such reduced number of classes to train the feature extractor and then
the performance of the proposed approach at last round of continual learning on
both the Skin7 and Skin40 datasets was calculated. Figure 4 does show that more
classes used for training the feature extractor would generally result in better
performance of the proposed approach. The feature extractor trained by more
classes of data would probably have learned to extract more types of features and
therefore could be more generalizable to a new but relevant domain. Consistent
with the observation and explanation, when the feature extractor is fixed by
random parameter weights (i.e., without any training), the classifier in continual
learning showed the worst performance (MCR is 21% on Skin7, 6% on Skin40;
not shown in Fig. 4). These results strongly suggest that exploring better ways
to obtain a better feature extractor would further improve performance of the
generative model in continual learning.
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4 Conclusion

In this study, we propose a Bayesian generative model for continual learning
of new classes. The model does not update the feature extractor but generates
statistical information to represent knowledge of each class. Without storing any
original data, the generative model can keep knowledge of each old class from
forgetting and outperforms existing state-of-the-art approaches which often store
small number of old data. The model is not limited to any specific feature extrac-
tor, and the final-round performance is not affected by the process of continual
learning such as the number of new classes to be learned each time or the num-
ber of rounds of continual learning. Better pre-trained feature extractor could
be explored to further improve the performance of the generative approach.
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