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Abstract. Human-level diagnostic performance from intelligent systems
often depends on large set of training data. However, the amount of avail-
able data for model training may be limited for part of diseases, which
would cause the widely adopted deep learning models not generalizing
well. One alternative simple approach to small class prediction is the tra-
ditional k-nearest neighbor (kNN). However, due to the non-parametric
characteristics of kNN, it is difficult to combine the kNN classification
into the learning of feature extractor. This paper proposes an end-to-end
learning strategy to unify the kNN classification and the feature extrac-
tion procedure. The basic idea is to enforce that each training sample and
its K nearest neighbors belong to the same class during learning the fea-
ture extractor. Experiments on multiple small-class and class-imbalanced
medical image datasets showed that the proposed deep kNN outperforms
both kNN and other strong classifiers.
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1 Introduction

With recent advance particularly in deep learning, intelligent diagnosis has shown
human-level performance for various diseases [1, 2]. However, in many intelligent
diagnosis tasks, the amount of available data for model training is often limited
for some or all diseases. Small training data often leads to the over-fitting issue,
i.e., the trained model does not generalize well to new data. While the issue
can be often alleviated by fine-tuning a model which was originally trained in
another task [3], such transfer learning may not work well if the image domain in
the current task is far from that of the original task. Recently developed meta-
learning techniques for few-shot learning problems seem to provide a plausible
solution to the small-class classification tasks [4]. However, these techniques of-
ten presume the access to a large number of additional small classes for model
training, which is impractical in the tasks of intelligent diagnosis.

∗corresponding authors.
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Another simple but often effective approach is the k-nearest neighbor (kNN)
classification [5, 11], where feature extraction and/or dimensionality reduction
are often performed to obtain a concise feature vector to represent the original
image [8, 12, 13]. However, because the feature extraction procedure is often pre-
determined and independent of the classification task of interest, the extracted
features may not be discriminative enough for the classification task. To alleviate
this issue, metric learning can be applied to transform the extracted features into
a new feature space where the transformed features become more discriminative,
such as neighborhood component analysis (NCA) [14] and large margin nearest
neighbor methods [15]. The metric learning methods depend on the originally
extracted features which may already omit certain features helpful for the clas-
sification task. To learn to extract discriminative features directly from original
image data, recently a triplet loss function was proposed to train a convolutional
neural network (CNN) through which an image will be transformed to a low-
dimensional but discriminative feature vector [16, 17]. However, the process of
CNN training is independent of the latter kNN classification step. It would be
desirable to unify feature extraction and kNN classification into a single step as
done in current CNN classifiers. However, searching for K nearest neighbours
for each training data is a non-differentiable operation, and therefore it is not
easy to combine the neighbor search into the training of a feature extractor.

This paper proposes an end-to-end learning strategy to unify the kNN classi-
fication and the feature extraction process, particularly for classification of small
classes. The basic idea is to enforce that each training image and its K nearest
neighbors belong to the same class during learning feature extractor. By unifying
the feature extraction and the kNN classification procedure, a better feature ex-
tractor can be learned specifically for the kNN classifier and the task of interest.
Comprehensive evaluations on multiple medical image datasets showed that the
proposed approach, called deep kNN, outperforms various kNNs and even CNN
classifiers particularly for small class prediction. Compared to the traditional
triplet loss, the proposed novel loss function can help train the feature extractor
much faster, as confirmed in experiments. What’s more, the proposed deep kNN
is independent of network architectures, and therefore can be directly combined
with any existing convolutional or fully connected neural network architectures.

2 Deep kNN

A traditional kNN classifier does not include feature extraction, i.e., the fea-
ture extraction is done separately from the k-nearest neighbor search. Since
the feature extraction does not consider any task-specific information, extracted
features could be not discriminative enough for the kNN classification. It would
be ideal to learn to extract features specific to the classification task of inter-
est. However, due to the non-parametric characteristics of the nearest neighbor
search process, so far it is not clear how to combine feature learning and the
k-nearest neighbor search into a unified process for the kNN classifier.
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2.1 Problem formulation
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Fig. 1. Demonstration of neighbor search (left) and deep kNN training (right). Left: for
each image xi, K nearest neighbors {yt,i

k } of the same class and M nearest neighbors
{zt,im } from all other classes are searched to generate K ·M triplets. Here K=5, M=5,
yt,i
k and zt,im are simplified to yk and zm. Right: during training, K within-class and

M cross-class nearest neighbors are searched within the mini-batch for each image.

We propose a deep learning strategy to naturally unify the two steps of
kNN classifier, where the feature extractor is represented by a convolutional
or fully connected neural network whose output of the last layer is a feature
vector representing the input image. The intuitive idea behind the strategy is to
train a feature extractor based on which any training image and its k-nearest
neighbors are forced to belong to the same class. In this way, the k-nearest
neighbor search procedure is naturally incorporated into the process of training
the feature extractor. If such a feature extractor can be trained, we would expect
any test image and its K nearest neighbors in the training set is probably from
the same class. The challenge is how to formulate this idea for feature extractor
training.

We propose a novel triplet loss to solve this challenge. At the beginning
stage of training a feature extractor, since the parameters of the feature ex-
tractor are initially either randomly set or from a pre-trained model based on
a public dataset (e.g., ImageNet), it is not surprising that the distributions of
different classes of images would be interleaved in the feature space. That means,
among the several nearest neighbors of any specific training image, one or more
neighbors may not be from the same class of the training image. To make any
image and its nearest neighbors belong to the same class, the feature extractor
needs to be updated such that the distance between the image and any of its
nearest neighbors is closer than the distance between the image and any image
of other classes in the feature space. Formally, denote the feature extractor after
the (t− 1)th training iteration by f (·;θt−1), where θ represents the parameters
of the feature extractor to be learned. Also denote the i-th training image by xi,
its K nearest neighbors of the same class after the (t − 1)th training iteration
by {yt,i

k , k = 1, . . . ,K}, and its M nearest neighbors from all the other classes
after the (t − 1)th training iteration by {zt,im ,m = 1, . . . ,M} (Figure 1, Left).
Then, after the tth training iteration, for each training image xi, we expect its
K nearest neighbors of the same class based on the updated feature extractor
f(·;θt) are closer to the training image xi compared to the distance between xi
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and any image of the other classes (particularly the M nearest neighbors from
the other classes), i.e., the following inequality is expected to be satisfied,

‖f(xi;θt)− f(yt,i
k ;θt)‖+ α < ‖f(xi;θt)− f(zt,im ;θt)‖, ∀ k,m (1)

where ‖ · ‖ represents the Lp norm (p = 2 in experiments), and α is a positive
constant further enforcing the inequality constraint. Based on this inequality
constraint, the loss function for the feature extractor can be defined as

l(xi,y
t,i
k , z

t,i
m ;θt) = [‖f(xi;θt)− f(yt,i

k ;θt)‖+ α− ‖f(xi;θt)− f(zt,im ;θt)‖]+ (2)

where [d]+ = max(0, d), such that the loss is 0 when the inequality constraint is
satisfied, and becomes larger when the constraint is further from being satisfied.
Considering all N images in the training set, the loss function becomes

L(θt) =
1

NKM

N∑
i=1

K∑
k=1

M∑
m=1

l(xi,y
t,i
k , z

t,i
m ;θt) . (3)

2.2 Neighbor search during training

Since feature extractor is updated over training iterations, part of (or the whole)
K nearest neighbors for one specific training image based on the feature extrac-
tor at previous iteration could become no longer the K nearest neighbors at
current iteration. Therefore, after updating the feature extractor by minimizing
L(θt) at the tth iteration, for each training image, its K nearest neighbors of
the same class and M nearest neighbors from the other classes will be searched
(based on Euclidean distance here) and updated again before updating the fea-
ture extractor in next iteration. In this way, the k-nearest neighbor classification
performance on the training dataset will be naturally evaluated and gradually
improved during feature extractor training. Therefore, the proposed training
strategy unifies the feature extractor and the kNN classification, thus called deep
kNN. Note during the training process, the non-parametric k-nearest neighbor
search plays the role of providing training data at each iteration, and the search
process is not involved in the derivative of extractor parameters. Therefore, the
difficulty in differentiating the non-parametric process is naturally circumvented.

In analogy to the stochastic gradient descent (SGD) widely adopted for train-
ing deep learning models, a similar SGD method can be used here to update the
feature extractor. In this case, the feature extractor will be updated once per
mini-batch of training images. However, this would cause the update (search)
of K nearest neighbors for each image in the next mini-batch set much more
computationally expensive, because all training images need to be fed into the
feature extractor after each mini-batch training to find the K nearest neigh-
bors for each image in the new mini-batch set. To alleviate this issue, similar
to the sampling strategy for minimizing the triplet loss in related work [18, 16],
the (K + M) nearest neighbors for each image may be searched just within
the mini-batch (Figure 1, Right). To guarantee that enough number of within-
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and cross-class nearest neighbors exist in each mini-batch, stratified sampling
was adopted for mini-batch generation (see Experimental setup). Experiments
showed such within-batch nearest neighbor search did not downgrade deep kNN
performance compared to searching for nearest neighbors from the whole dataset.

2.3 Comparison with traditional triplet loss

While the proposed triplet loss has a similar form compared to the traditional
triplet loss [16, 17], there exists a few significant differences between them. Tradi-
tionally, triplets are formed often by the furthest within-class pairs and the near-
est cross-class pairs, while the proposed triplet is formed by the nearest within-
class pairs and nearest cross-class pairs. The objective of traditional triplet loss
is to enforce all pair-wise distances within a class are smaller than the distances
between any data of the class and all data of other classes. In comparison, the
proposed method only requires any data and its K nearest neighbors of the same
class are closer than the distance between the data and other classes of data.
That means, traditional triplet loss is used to train a feature extractor based on
which the distribution of each class of data is clustered more compactly, while
the proposed triplet loss is used to help separate distributions of different classes
apart from each other such that the K nearest neighbors of any data belong to
the same class as that of the data, without requiring the distribution of each
class to be compactly clustered (Supplementary Figure S1(a)(b)). Such a differ-
ence also indicates that the feature extractor based on the proposed triple loss
can be trained more easily (i.e., faster convergence) than that based on tradi-
tional triplet loss. Last but important, the proposed triplet loss can be used to
train a deep kNN by combining the two steps of kNN classification, while the
traditional triplet loss cannot. As shown below, deep kNN performs much better
than traditional two-step kNN classifiers.

3 Experiment

Experimental setup: Experiments were extensively carried out on two skin
image datasets, SD-198 and Skin-7, and one Pneumonia X-ray dataset ∗, each in-
cluding small classes and/or different level of class imbalance (Table 1). For each
dataset, images were resized into 256× 256 and randomly cropped to 224× 224
pixels for training, followed by a random horizontal flip. The similar operation
was performed for testing, except that only one cropped image was generated
from the center region of each test image. During training a deep kNN, the batch
size B varied a bit for different datasets due to the varying scales of datasets, set
to 96 on Skin-7 and pneumonia dataset, and 90 on SD-198 dataset. To guarantee
K nearest neighbors of the same class for each image in a batch particularly on
the SD-198 dataset, the stratified sampling was adopted, i.e., forming batches
by randomly sampling 9 classes and then randomly sampling 10 images for each

∗https://www.kaggle.com/c/rsna-pneumonia-detection-challenge.
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Table 1. Dataset statistics. More ticks denote more imbalanced.

Dataset #Class #Train #Test ImageSize SmallestClass LargestClass Imbalance

Pneumonia 3 21345 5339 1024× 1024 6012 11821
√

SD-198 [19] 198 5,206 1377 [260, 4752] 9 60
√√

Skin-7 [20] 7 8005 2005 600× 450 115 6705
√√√

of the 9 class. During training, the SGD optimizer was used, with the initial
learning rate 0.01. Learning rate decayed by 0.5 for every 20 epochs on Skin-7
dataset and pneumonia dataset, and every 30 epochs on SD-198 dataset.

During testing, all test and training images were fed into the trained feature
extractor only once to get the corresponding feature vectors. For each test im-
age, its k-nearest neighbors within the training dataset were found in the feature
space. The class label of the test image was then determined by the majority
class in those neighbors. For simplicity, K denotes the number of nearest neigh-
bors used in training while Kp denotes the number of nearest neighbors used
in testing. Overall accuracy (Acc), mean class recall over all classes (MCR) and
the recall on the smallest class (RS) were used for measurement.

Effectiveness of deep kNN: To demonstrate effectiveness of the proposed
deep kNN, our method is compared to several baseline methods. Two baseline
kNN classifiers, kNN (VGG19) and kNN (ResNet), were respectively built on the
feature extractor part of VGG19 [21] and ResNet50 [22] pretrained on ImageNet.
The other baseline kNN Triplet (ResNet50) was built on the feature extractor
trained with the traditional triplet loss [17], using the pretrained ResNet50 on
ImageNet as the backbone. The same ResNet50 backbone was trained with the
proposed deep kNN learning strategy. Note that similar amount of effort was put
into tuning each baseline method. Table 2 showed that the proposed deep kNN
(rows 4, 8) outperforms all the three baseline kNN classifiers (rows 1-3, 5-7).
It is reasonable that both the baseline kNN (VGG19) and kNN (ResNet) were
outperformed by the Triplet (ResNet) and the proposed deep kNN, because the
latter were trained using the specific data of the task of interest. However, it is
surprising that the deep kNN also outperforms the Triplet (ResNet), especially
considering that the distribution of the training data based on the traditional
triplet loss are more compactly clustered than that based on the proposed triplet
loss (Supplementary Figure S1(a)(b)). Detailed inspection shows that the distri-
bution of the test dataset based on the deep kNN is more compactly clustered
than that based on the traditional triplet loss (Supplementary Figure S1(c)(d)),
suggesting the feature extractor trained by the proposed triplet loss is more
generalizable to unknown data than that by the traditional triplet loss.

We also compared deep kNN with CNN classifier of the same ResNet50 back-
bone. Standard deviations over multiple runs are within the range [0.5%, 1.2%]
for accuracy, mean class recall (MCR), and the recall on the smallest class in all
experiments. The overall performance (Acc, MCR) of deep kNN (Table 2, rows
4, 8) is close to that of CNN classifier (Table 2, 2nd last row, using class-weighted
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Table 2. Comparison between deep kNN and various baselines on multiple datasets.
K=5 and M=5. Similar findings were obtained with other values for K and M . For
each model, multiple runs were performed with similar performance observed.

Datasets Skin-7 Pneumonia SD-198

Methods Acc MCR RS Acc MCR RS Acc MCR RS

kNN (VGG19, Kp = 1) [21] 71.4 42.0 37.9 52.7 52.4 43.1 24.5 24.4 20.8
kNN (ResNet50, Kp = 1) [22] 75.6 49.9 55.2 52.4 51.2 38.9 27.6 28.4 29.2
Triplet(ResNet50,Kp = 1) [16] 82.9 64.2 63.2 67.8 66.3 65.2 60.0 60.1 47.3

deep kNN (ours, Kp = 1) 88.2 77.4 77.0 71.0 69.3 67.3 64.5 64.1 48.3

kNN (VGG19, Kp = 5) [21] 70.7 30.8 10.3 55.4 55.7 45.0 15.1 13.3 4.2
kNN (ResNet50, Kp = 5) [22] 74.4 37.5 34.5 55.5 54.7 39.7 19.1 17.5 12.5
Triplet(ResNet50,Kp = 5) [16] 84.3 68.3 67.3 70.0 68.7 66.3 60.2 60.0 47.2

deep kNN (ours, Kp = 5) 89.1 78.9 77.3 71.1 69.4 69.0 65.1 64.3 48.3

Weighted-CE(ResNet50) [23] 88.0 80.2 76.6 71.1 69.1 70.1 61.9 62.4 47.7
deep kNN* (ours, Kp = 5) 90.3 81.0 80.4 71.6 71.1 70.9 66.4 66.4 51.5

cross entropy to handle data imbalance) on Skin-7 and Pneumonia. Importantly,
on the small-class dataset SD-198 and the small class (column RS) of Skin-7 (no
small class on Pneumonia), deep kNN clearly outperforms the CNN classifier,
confirming that deep kNN works better particularly for small class prediction.
CNN classifier could become overfitting on small classes, while deep kNN could
largely alleviate this issue by increasing the number of training data (triplets)
on small classes. Also interestingly, after fine-tuning the trained CNN classifiers
(with the last fully connected layer removed) with the proposed triplet loss, the
resulting new deep kNN (Table 2, last row) further improved the performance.

Deep kNN with MLP: In some scenarios, only feature vectors were originally
available in dataset. In this case, the deep kNN learning strategy still works,
not based on a CNN structure but on a multilayer perceptron (MLP) struc-
ture. To demonstrate effectiveness of deep kNN under this condition, features
vector of each image in Skin-7 was extracted from output of the last convolu-
tional layer of a pre-trained ResNet50, and then with the vectors as original
data, three-layer MLPs (with batch normalization and ReLU activation) were
trained respectively based the proposed triplet loss (MLP+deep-kNN in Ta-
ble 3), the traditional triplet loss (MLP+triplets), and the cross-entropy loss
(MLP+CE ). The neighborhood component analysis (NCA) and large margin
nearest neighbor (LMNN) methods were also evaluated with the feature vectors
as input (note NCA and LMNN were not used as baselines in Table 2 because
two-dimensional image data cannot be used as input to the two methods). Ta-
ble 3 shows that all the linear (NCA, LMNN ) and non-linear (MLP+triplets,
MLP+CE, MLP+deep-kNN ) transformations of the initial feature vectors would
help improve the performance of kNN classification compared to the basic kNN
(kNN-basic). Among them, deep kNN outperforms all others, again confirming
the effectiveness of the proposed learning strategy for kNN classification.
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Table 3. Performance comparison when MLP was used as backbone.

Methods kNN-basic NCA LMNN MLP+triplets MLP+CE MLP+deep-kNN

Acc 64.53 75.06 81.85 77.13 78.85 85.09

MCR 34.49 36.39 61.78 62.22 63.11 66.08

RS 10.34 27.59 62.07 63.43 64.21 67.30

Fig. 2. Training process of feature extractor with the proposed (blue) and traditional
triplet loss (orange). Left: ResNet50 on SD-198; Right: DenseNet121 on Skin-7.

Speed of convergence: We compared the effects of the proposed triplet loss
with the traditional triplet loss on the convergence of the optimization using
different backbone structures and datasets. It was observed that the proposed
triplet loss takes much fewer epochs than the traditional traditional loss to reach
the same level of training accuracy (Figure 2), faster in convergence regardless
of model structures and datasets. Note that the deep kNN learning strategy only
requires that each sample and its K nearest neighbours of the same class are
close enough, while the traditional triplet loss requires all samples of the same
class should be closer than the cross-class samples. The stronger constraints in
the traditional triple loss is probably the key cause to the slower convergence.
Flexibility with Architecture. Deep kNN is independent of choice of model
architectures. To show this, we test deep kNN with four widely used CNNs. For
each backbone, the network was trained with cross-entropy loss on the dataset of
task of interest, and the output layer was then removed to get the task-specific
feature extractor. Such feature extractor was fixed and then a traditional kNN
was used to predict each test image, resulting in a strong baseline kNN (be-
cause such baseline kNN is based on a task-specific feature extractor). With
each backbone network, the strong baseline kNN was compared to the corre-
sponding deep kNN model. Table 4 shows deep kNNs with different backbones
perform slightly differently, but all outperforming the corresponding strong base-
line kNNs, demonstrating the deep kNN learning strategy is robust to structures
of feature extractors. Additional evaluations shows the deep kNN is also robust
to the hyper parameters K, M , and Kp (Supplementary Tables S3 and S4).

4 Conclusion

In this paper, we introduced a novel deep learning approach, called deep kNN,
which for the first time unifies the feature extraction and the kNN classification
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Table 4. Performance of the deep kNN with different CNN backbones on the SD-198
dataset. Similar findings were obtained on other datasets. K=5, M=5 and Kp=5.

Models
VGG19 ResNet50 Dense121 SE-ResNet50

kNN deep kNN kNN deep kNN kNN deep kNN kNN deep kNN

Acc 59.16 61.51 60.17 65.12 60.54 64.02 61.85 62.79
MCR 56.33 61.93 57.35 64.34 60.12 65.11 59.32 62.27
RS 43.12 45.43 46.01 48.31 50.42 52.21 50.01 53.12

procedure. Experiments showed that keep kNN not only performs better than
traditional two-step kNN classifiers, but also better than CNN classifiers partic-
ularly on small class prediction. Therefore, deep kNN provides a new approach
to intelligent diagnosis of diseases with limited training data.
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