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Abstract. Convolutional neural networks (CNNs) are vulnerable to ad-
versarial noises, which may result in potentially disastrous consequences
in safety or security sensitive systems. This paper proposes a novel mech-
anism to improve the robustness of medical image classification systems
by bringing denoising ability to CNN classifiers with a naturally em-
bedded auto-encoder and high-level feature invariance to general noises.
This novel denoising mechanism can be adapted to many model archi-
tectures, and therefore can be easily combined with existing models and
denoising mechanisms to further improve robustness of CNN classifiers.
This proposed method has been confirmed by comprehensive evaluations
with two medical image classification tasks.
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1 Introduction

Convolutional neural networks (CNN) have been widely used in medical im-
age analysis, such as automatic segmentation of tumor regions in MRI [13] and
intelligent diagnosis of skin cancers [4]. However, the application of a medical
analysis system would be limited if it is sensitive to various noises and vary-
ing environments. One way to critically evaluate the robustness of a medical
image system is by adversarial attacks [14]. Specifically, clean images can be
altered with imperceptible perturbations (called adversarial noises) to generate
adversarial examples, and such adversarial examples can fool CNN classifiers
to make incorrect predictions with high confidence. Recent studies on natural
images clearly demonstrate that CNN classifiers can be easily attacked and be-
come completely crashed [8]. Adversarial attacks have also been performed on
medical images [12], confirming the high sensitivity of CNN diagnosis systems to
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adversarial noises. Therefore, it is highly demanding to improve the robustness
of intelligent diagnosis systems.

System robustness can be improved by providing the system with the ability
of defending adversarial attacks. Multiple defense approaches have been proposed
for this purpose. For example, adversarial training and its variants can improve
system’s defense ability simply by adding one or more types of adversarial ex-
amples into the training data during classifier training [5,8,15], while denoising
approach pre-processes images often with certain type of auto-encoders, aim-
ing to remove potential adversarial noises before inputting images to classifiers
[1,10]. Adversarial training requires embedding adversarial attacking process into
classifier training [5,8,15], and denoising approach often suffers from accuracy
reduction in classifying clean images [1,10]. Another approach is to train a dis-
tillation network which can improve defense ability by effectively enlarging gaps
between distributions of classes in the high-level semantic feature space [11].

While the attacking and defense studies of deep neural networks have been
actively investigated on natural images in the past several years, few work has
investigated the robustness of medical image analysis associated with its defense
ability. This paper proposes a novel defense strategy to improve the robustness
of intelligent diagnosis systems. Different from existing approaches, the proposed
method directly improves network classifier’s denoising ability with a naturally
embedded auto-encoder and a semantic feature invariance strategy for general
noises. This novel denoising mechanism can be adapted to many classifier archi-
tectures and is independent of any image pre-processing procedure. Therefore,
it can be easily combined into the existing models and denoising mechanisms
to further improve the robustness of network classifiers. Experiments on a skin
image dataset and a chest X-ray dataset demonstrate that, it can always sig-
nificantly improve the robustness of the classifiers via integrating the proposed
denoising mechanism into the existing CNN classifiers, no matter whether the
classifiers have employed other defense methods.

2 Methods

In adversarial attacks, image pixel values can be manipulated via small and
carefully-crafted perturbations, such that the originally imperceptible adversar-
ial noise can be progressively amplified over layers in deep neural networks,
leading to incorrect classifications. Consider an image as a point in the original
high-dimensional image space, and the re-ordered output of the last convolu-
tional layer in a CNN classifier as a point in a low-dimensional high-level seman-
tic feature space. For an original (clean) image which can be correctly classified
by the neural network classifier, the corresponding adversarial example should
be in a small hypersphere centered at the clean image in the image space, while
the two images should be relatively far from each other in the high-level seman-
tic feature space due to mis-classification of the adversarial example. To defend
attacks from adversarial examples, one intuitive idea is to assure that the convo-
lutional layers in the classifier can transform all neighboring points around each
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Fig. 1. Training a CNN classifier with an additional loss to emphasize similarity be-
tween noisy images and clean images in the semantic feature space. Each noisy image
is generated by adding random noise to the corresponding clean image.

clean image to the same point in the semantic feature space as that of the clean
image. The popular adversarial training, which adds adversarial examples to the
training set, can be considered as one simplified implementation of this idea.
Another idea is to remove (both general and adversarial) noises by projecting
images to and then conducting reconstruction from a lower dimensional space,
supposing that the clean images lie on a low-dimensional manifold while the
noisy images are not. With this idea, auto-encoder has been applied to process
images often before they are fed into the classifier. By combining the two ideas,
but without using adversarial examples and the pre-processing procedure, we
propose a novel plug-and-play mechanism to defend adversarial attacks, thus
improving system robustness.

2.1 Transforming neighboring noisy images to the same point

Because each adversarial example falls within a small neighborhood of the cor-
responding clean image in the image space, the classifier trained additionally
with all the available noisy images, within the neighborhood of each training
image, should become more robust to adversarial attacks, in the sense that all
noisy images around a clean image would be projected to the same point in the
semantic feature space. However in practice, it is infeasible to collect all such
noisy images. Here by trying to project a small subset of general noisy images
within the neighborhood of each clean image to the same point as that of the
clean image in the semantic feature space, we expect adversarial examples within
the neighborhood would be more likely projected to the same point as well. In
this case, the adversarial examples would be more likely recognized as the same
class of the clean image, thus improving robustness of the classifier.

Formally, for the i-th clean image xi in the original training set, let us denote
by x′

i a noisy image generated by adding uniform random noise [−σ, σ] to each
pixel of the clean image xi, and f(xi) and f(x′

i) be the corresponding semantic
feature vectors generated by the output of the final convolutional layer in the
classifier. Then the objective of transforming neighboring noisy images to the
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same point in the semantic feature space can be formulated as an optimization
problem, i.e., training the classifier (see Fig. 1) such that the following loss
function Ln (called neighbor loss) is minimized:

Ln =
1

N

N∑
i=1

‖f(xi)− f(x′
i)‖. (1)

Note that x′
i can be randomly generated over training iterations such that mul-

tiple different noisy images are used for each clean image. Using random noise
rather than adversarial noise during model training is one key difference between
our approach and existing ones (e.g., [9]).

2.2 Embedded auto-encoder

The existing denoising approaches often employ a separate auto-encoder to re-
move potential adversarial noise from images before sending image data to the
classifier. However, fine details in normal regions in the images could also be
modified by the auto-encoder. Such change in normal regions actually causes
new noises compared to the original clean images, and these new noises may be
progressively amplified over layers in the classifier. Just as the adversarial noises,
such new noises may also lead to mis-classification of the images, which actually
has been observed in related studies [10] and in our experiments.

To avoid the downgraded classification performance on clean images and
meanwhile make use of denoising ability from auto-encoder, we propose to embed
the auto-encoder into the network classifier, where the encoder part shares low-
to-middle convolutional layers of the classifier (Figure 2 Left). Because the auto-
encoder denoises images mainly by projecting them to a lower-dimensional space
via the encoder part, sharing the encoder with the CNN classifier would naturally
transfer the denoising competence to the classifier. Meanwhile, the classifier still
uses original images rather than reconstructed images from the auto-encoder as
input. This is clearly different from the existing approach which used a separate
auto-encoder before the CNN classifier [9] (Figure 2 Right).

Thus, for the clean image xi and one corresponding noisy image x′
i, with

their reconstructed results x̂i and x̂′
i from the embedded auto-encoder, the clas-

sifier can be trained to not only improve the classification performance, but also
help improve the reconstruction performance of the embedded auto-encoder by
additionally minimizing the reconstruction error La:

La =
1

N

N∑
i=1

{‖xi − x̂i‖2 + ‖xi − x̂′
i‖2}. (2)

Note that the target of the reconstructed noisy image x̂′
i is the clean image xi.

Similarly as in Equation (1), multiple noisy x′
i can be randomly generated for

each clean image.
Combining both ideas (Equations 1 and 2), a more robust classifier can be ob-

tained by simultaneously training the classifier and the embedded auto-encoder,
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Fig. 2. The proposed embedded auto-encoder with a CNN network (Left) is different
from the recently proposed high-level feature guided denoiser [9] (Right). D represents
auto-encoder, and L1 represents L1 distance.

with the constraint to make clean and noisy images similar to each other in the
semantic feature space, i.e., by minimizing the loss function L,

L = Lc + λnLn + λaLa . (3)

Here Lc denotes the cross-entropy loss for the classifier itself to improve its
classification performance on both clean and noisy images, λn and λa are hyper-
parameters to respectively control the relative weights of loss terms Ln and La.

3 Experiments

3.1 Experimental settings

The experiments were performed on two medical image datasets, the skin image
dataset from ISIC2018 Challenge with 7 disease categories(SKIN4) [3], and the
chest X-ray dataset with 3 categories 4. To reduce the data imbalance between
classes in the skin dataset, four classes (MEL, NV, BCC and BKL) in which
the number of images exceeded 500 were selected and 1,500 images of NV class
were randomly selected from 6,705, while keeping the other classes of data un-
changed. The selected images were split to training set and test set with the
rate around 5:1. For the chest X-ray dataset, we randomly split the raw train-
ing set to two parts, with 21,000 images as our training set and the left 6,000
images as test set. Also, to generate adversarial images for the evaluation of
the proposed defense approach, different attacking methods, including the Fast
Gradient Sign Method (FGSM)[5], the iterative FGSM (IFGSM) [7], and the
Carlini&Wagner [2] method (C&W), were applied to four widely used network
classifiers, including ResNet18 [6] and VGG-16. For each training sample, we
generated two adversarial examples with the perturbation level ε in {4, 8} for
FGSM and IFGSM. And for C&W, we set the searching times to 5 and the
iteration times to 1000.

4 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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There are mainly two types adversarial attacks based on different assump-
tions on the knowledge of the target network, i.e., white-box and black-box
attacks. In the black-box attack, an attacker can observes only the network’s
output information on some probed input information, which is more realistic
and applicable. In comparison, in the white-box attack, an attacker has detailed
information on the network architecture and model parameters. The evaluations
here mainly focus on the defense of black-box attacks.

All the CNN classifiers used in experiments were optimized using SGD, with
initial learning rate set 0.01, and weight decay set 0.0001. Each model was trained
on a single GPU with batch size 64. The number of training epochs was set 80.
Note that due to limited space, only part of the evaluation results were shown
below, and the attacking model was ResNet18 unless otherwise mentioned.

Table 1. Classification accuracy on the adversarial examples generated from the SKIN4
test set. Rows 2 to 4 indicate the influence of neighbor loss and rows 5 to 7 represent
the influence of reconstruction loss. Clean stands for original clean images. NA means
no defense.

Defense
Clean

FGSM IFGSM10
C&W

λn λa ε = 4 ε = 8 ε = 4 ε = 8

NA NA 84.28 19.27 21.99 3.78 3.78 1.54

0.1
-

81.32 41.84 30.97 49.29 30.61 16.31
1 82.74 46.34 32.51 56.15 38.65 21.28
10 64.78 -

-
0.1 83.22 39.13 27.54 45.27 28.49 15.25
1 82.62 41.02 29.20 53.43 33.57 19.39
10 82.39 41.66 29.55 49.41 31.80 18.91

1 10 78.96 57.92 45.86 65.37 54.37 35.22

3.2 Evaluations on skin dataset

This section evaluates the effect of the proposed approach in improving robust-
ness of a CNN classifier ResNet18 with ablation study on the skin dataset. Table
1 showed that when including the neighbor loss during training, with the embed-
ded auto-encoded excluded, the trained classifiers (rows 2-4) performed signifi-
cantly better than the classifier without any defense (first row), when attacked
by different methods at different perturbation levels (ε). It also shows that with
increasing weight λn of the neighbor loss, the defense performance increased ac-
cordingly. However, large λn (10.0) might lead to downgraded performance in
classifying clean images. This is reasonable because larger λn would make the
network pay less attention to the cross-entropy loss during training. As a trade-
off, λn = 1 was chosen for subsequent tests on the skin dataset. Note that the
decrease in classification accuracy on clean images is a common phenomenon in
most defense methods (e.g., see [7,10]).
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Similarly, by adding only the embedded auto-encoder to the classifiers, with
the neighbor loss excluded during training, Table 1 (fifth row to second last
row) showed the trained classifiers also performed significantly better than the
classifier without any defense (first row) at various attacking scenarios. As a
trade-off, λa = 10 was chosen for subsequent tests. Note that λa = 100 lead to
downgraded performance in classifying clean images.

By combing both the neighbor loss and the embedded auto-encoder into the
classifier, the trained classifier showed superior performance than all the above
results (Table 1, last row), suggesting that the two proposed two ideas work
together to further improve the robustness of the classifier. Similar results were
obtained on the chest X-ray dataset (Table 2).

Table 2. Classification accuracy of the
classifiers on the adversarial examples
generated from the chest X-ray test set.

Defense
Clean

FGSM IFGSM10
C&W

λn λa ε = 4 ε = 8 ε = 4 ε = 8

NA NA 76.00 20.86 20.91 28.21 16.13 12.39
1 0 75.27 68.48 63.07 71.84 68.68 60.29
0 10 74.85 67.66 62.04 70.66 68.34 57.74
1 10 73.97 71.21 68.66 72.35 70.79 60.87

Table 3. Classification accuracy of the
architecture on the SKIN4 test set with
modified model based on VGG16. The
attacking model is ResNet18.

Defense
Clean

FGSM IFGSM10
C&W

λn λa ε = 4 ε = 8 ε = 4 ε = 8

NA NA 84.28 38.77 28.25 50.71 29.08 15.60
1 0 82.74 68.68 58.75 74.00 69.50 50.12
0 10 82.39 66.55 56.03 73.05 67.85 44.21
1 10 78.96 70.21 64.18 74.00 70.45 54.73

3.3 Combinations with different model structures

To show that our approach can work with different model structures, we com-
bined our idea with another model VGG-16. Table 3 again showed that the
proposed defense approach improved the robustness of the CNN classifier with
a different structure, compared to the classifier without using defense (row with
‘NA’). Combined with the evaluations on the ResNet18 structure above, it sup-
ports that the proposed approach helps improve robustness of multiple CNN
model structures.

3.4 Combinations with existing defense approaches

To show that our approach is complementary to existing defense approaches, we
combined our approach with two existing approaches, the Reformer approach
[10] and the HGD approach [9]. Table 4 clearly showed that when one or both
of our ideas (Ln, La, Ln +La, corresponding to the neighbor loss, the embedded
auto-encoder, or both) were combined with the existing two approaches, the
combination further improved the robustness of the classifiers compared to the
performance from the existing approaches alone.
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Table 4. Classification accuracy when ours combined with existing approaches. The
results are based on the SKIN4 test images. R denotes the Reformer approach.

Defense FGSM IFGSM10
C&W

ε = 4 ε = 8 ε = 4 ε = 8
NA 19.27 21.99 3.78 3.78 1.54

Reformer(Pixel-level Denoiser [10])
R 30.16 27.44 18.64 14.41 9.71

R + Ln 48.37 36.85 58.17 42.14 26.06
R + La 42.71 31.28 53.47 33.49 25.46
R + Ln + La 59.17 46.48 69.66 55.54 44.71

HGD*(High-level features Guided Denoiser [9] )
HGD* 41.80 36.97 42.49 26.01 22.73

HGD* + Ln 56.42 57.01 63.52 46.32 36.77
HGD* + La 51.14 47.41 58.18 41.34 31.59
HGD* + Ln + La 64.13 51.83 70.52 58.67 49.55

4 Conclusion

In this paper, we proposed a novel defense mechanism to improve robustness of
medical image classification systems. This mechanism embeds an auto-encoder
into the CNN structure and keeps high-level features invariant to general noises.
It is complementary to existing defense approaches and therefore can be com-
bined together to further improve the robustness of CNN classifiers.
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