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A B S T R A C T

Despite that supervised learning has demonstrated impressive accuracy in medical image segmentation, its
reliance on large labeled datasets poses a challenge due to the effort and expertise required for data acqui-
sition. Semi-supervised learning has emerged as a potential solution. However, it tends to yield satisfactory
segmentation performance in the central region of the foreground, but struggles in the edge region. In this
paper, we propose an innovative framework that effectively leverages unlabeled data to improve segmentation
performance, especially in edge regions. Our proposed framework includes two novel designs. Firstly, we
introduce a weak-to-strong perturbation strategy with corresponding feature-perturbed consistency loss to
efficiently utilize unlabeled data and guide our framework in learning reliable regions. Secondly, we propose
an edge-aware contrastive loss that utilizes uncertainty to select positive pairs, thereby learning discriminative
pixel-level features in the edge regions using unlabeled data. In this way, the model minimizes the discrepancy
of multiple predictions and improves representation ability, ultimately aiming at impressive performance on
both primary and edge regions. We conducted a comparative analysis of the segmentation results on the
publicly available BraTS2020 dataset, LA dataset, and the 2017 ACDC dataset. Through extensive quantification
and visualization experiments under three standard semi-supervised settings, we demonstrate the effectiveness
of our approach and set a new state-of-the-art for semi-supervised medical image segmentation. Our code is
released publicly at https://github.com/youngyzzZ/SSL-w2sPC.
1. Introduction

Automated semantic segmentation plays a critical role in medical
image analysis, which has demonstrated exceptional performance in
diverse segmentation tasks, reaching the forefront of the field (Yang
and Farsiu, 2023; Lu et al., 2023; Gupta et al., 2022; Huang et al.,
2022; Chen et al., 2023b; Zhuang et al., 2023). Despite the impor-
tance of fully supervised learning approaches in achieving satisfactory
performance in semantic segmentation, their reliance on abundant
and accurate annotations introduces challenges. Acquiring a large-scale
dataset with pixel-wise annotations is often difficult due to its high cost
and time-consuming nature. Semi-supervised learning presents a poten-
tial solution to overcome the challenge imposed by annotation scarcity
in medical image analysis. These approaches leverage a combination
of a limited number of labeled samples and a sufficiently large set of
unlabeled samples to effectively train models.

∗ Corresponding author at: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
∗∗ Corresponding author at: School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China.

E-mail addresses: wangruix5@mail.sysu.edu.cn (R. Wang), sujingyong@hit.edu.cn (J. Su).

The prevailing semi-supervised learning methods in deep learn-
ing mainly include consistency regularization (Rasmus et al., 2015;
Tarvainen and Valpola, 2017; Li et al., 2022) and self-training with
pseudo-labels (Fan et al., 2020; Bai et al., 2017). These approaches can
be summarized by the utilization of limited annotated data to train an
initial network, which is subsequently employed to generate pseudo-
labels for unlabeled data, and appropriate constraints are applied to
these pseudo-labels to extract the abundant semantic information em-
bedded in the unlabeled data. This strategy utilizes both unlabeled data
and the limited availability of strongly labeled samples to train the
segmentation network.

These approaches suffer from one limitation. They impose appro-
priate constraints (e.g. consistency regularization) on multiple predic-
tions following the introduction of image-level perturbations. However,
image-level perturbation requires careful augmentation design and pro-
vides a limited diversity of augmented data (Li et al., 2021a). In
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Medical Image Analysis 101 (2025) 103450 
contrast, feature-level perturbations facilitate a more extensive explo-
ation within the feature space, enabling the model to better leverage
nlabeled data (Yang et al., 2023a). As a result, a noticeable phe-
omenon arises wherein the majority of semi-supervised frameworks
emonstrate the capability to accurately segment the primary body

region of the object but fall short of satisfactory in edge regions.
To overcome this limitation, many existing consistency-based meth-

ods generate multiple predictions through the design of network archi-
ectures such as multiple decoders, pyramid structures, or MC dropout

to better exploit unlabeled data, but these methods overlook the im-
ortance of meaningful perturbations at the feature level, which can
mprove the reliability and performance of model outputs. Inspired
y recent studies (Ouali et al., 2020; Miyato et al., 2018; Wu et al.,

2022), which indicate that random variations in features can lead to
nconsistent and inaccurate predictions, we further observe that the

introduction of perturbations on unlabeled data induces substantial
changes in the edge regions. Based on this phenomenon, we propose
a novel semi-supervised learning framework that combines weak-to-
strong perturbation for consistency regularization and edge-aware con-
trastive learning for effective exploitation of unlabeled data to achieve
accurate segmentation. Specifically, we design a shared encoder and
multiple decoders, each equipped with dedicated weak-to-strong per-
turbation modules. These weak-to-strong perturbation modules at the
semantic level introduce slight variations in the predictions of the
decoder. The pixel/voxel-level uncertainty associated with these pre-
dictions is then used to obtain an uncertainty-weighted aggregation
label. To guide the model in learning reliable regions of predictions,
a feature-perturbed consistency is imposed between the predictions
generated by the decoders and the aggregation label. We also define an
edge-aware contrastive loss for unlabeled data to improve performance
in edge regions. This contrastive loss meticulously selects positive
pairs by uncertainty ranking, directing the model’s attention towards
edge regions. It encourages the similarity of representations for pixels
belonging to the same class semantic label in the edge region, while
simultaneously ensuring their dissimilarity to the representations of
pixels from different classes.

Concretely, our contributions are summarized as follows:

• We develop a weak-to-strong feature-perturbed consistency
scheme that encourages the consistency of reliable regions across
different predictions. This scheme consists of weak-to-strong
feature-level perturbation and feature-perturbed consistency. In-
spired by previous work (Yang et al., 2023b), the proposed feature
perturbations incorporate additional statistical information along
the channel dimension and adopt a different integration way in
the model. This scheme allows our model to focus on learning
reliable predictions and mitigate the negative effects of unreliable
regions, leading to more effective training.

• We propose a novel edge-aware contrastive loss that effectively
leverages class-discriminative representations, specifically in the
edge regions. This loss function improves the discrimination be-
tween class edges by sampling positive pixels from object edges
guided by uncertainty, resulting in impressive segmentation per-
formance in edge regions.

• Extensive evaluations on both 2D and 3D datasets for lesion and
organ segmentation demonstrate the superiority of our method,
with new state-of-the-art performance achieved in semi-
supervised segmentation.

2. Related work

This paper is mainly based on semi-supervised learning and con-
trastive learning. Therefore, our attention is directed towards exploring
and discussing relevant literature in these two specific fields.
 b

2 
2.1. Semi-supervised learning

Recently, several semi-supervised learning methods (Wang et al.,
2023c; Lei et al., 2023; Chen et al., 2023c; Zhao et al., 2023; Yang
et al., 2023a; Chaitanya et al., 2023) have been proposed leveraging
both unlabeled and labeled images during training. Depending on the
training strategy, semi-supervised learning can be broadly classified
into the following categories:

Self-training based: In this methodology, the model initialized
ith labeled data is employed to generate preliminary predictions for

he unlabeled data. Then, the annotated labels from the labeled data,
long with the pseudo-labels generated from the previous iteration’s
rediction results, are utilized as ground truths for iteratively updating
he network. This iterative process ensures the progressive refinement
f the network’s performance, and the pseudo-label estimates are pe-
iodically updated after a few epochs of training, with the expectation
hat their quality will progressively improve throughout the training
rocess. This paradigm has demonstrated remarkable improvements in
he field of medical image segmentation (Lyu et al., 2022; Basak and

Yin, 2023). Nevertheless, this method has a drawback. Since the initial
odel relies on a limited amount of labeled data for initialization,

ts segmentation performance is unsatisfactory. Limited segmentation
bility can lead to the generation of low-quality pseudo-labels, which
n turn can hinder the subsequent training of the model and prevent
ts performance from improving (Chapelle et al., 2009). To address

this problem, some approaches have incorporated the assessment of
uncertainty and confidence (Yu et al., 2019; Wang et al., 2021a; Wu
t al., 2022; Luo et al., 2022; Qiao et al., 2023; V. et al., 2023)

into the training process, aiming to generate higher quality pseudo-
labels, thereby mitigating the adverse effects caused by low-quality
pseudo-labels. Other approaches involve the utilization of teacher-
student networks (Tarvainen and Valpola, 2017; Basak and Yin, 2023),
ypically consisting of two networks with identical architectures. In

this setup, the teacher network functions by providing labels to the
student network, enabling it to learn while simultaneously evaluating
the quality of the pseudo-labels. The student model, on the other hand,
is trained using both the ground truth from the labeled set and the
pseudo-labels derived from the unlabeled set.

Consistency regularization based: Those methods (Luo et al.,
2021a,b; Yu et al., 2019; Qiu et al., 2022; Chaitanya et al., 2020;
Ma et al., 2022; Huang et al., 2023) rely on the assumption that the
predictions from the model should remain consistent across different
perturbations (e.g. data augmentation or feature perturbation). The
desired result is that the network maintains consistency in its output
irrespective of perturbation applied to the input image or features.
To achieve this, the mean square error or Kullback–Leibler divergence
between outputs obtained after applying different perturbations is com-
monly employed to minimize the distribution of output labels, ensuring
a consistent prediction across different perturbations. For example, Yu
t al. (2019) introduces a framework called the uncertainty-guided

mean teacher (UA-MT) framework, which incorporates transformation
consistency to improve overall performance. Li et al. (2020b) and Wang
et al. (2021a) further investigate shape constraints by introducing the
igned distance map and the signed distance field, respectively. The
bove methods and Luo et al. (2021a) achieve consistency regular-

ization by designing special auxiliary tasks. Later, Luo et al. (2022)
introduces a pyramid-prediction network for lesion segmentation, in-
orporating uncertainty-rectified pyramid consistency. However, it has

been observed that the predictions derived from the shallow layers of
the network tend to be coarse and imprecise. Wu et al. (2022) designs
 mutual consistency network that leverages unannotated images by

promoting consistency between the predictions of three marginally dif-
ferent decoders. Similar works (Ouali et al., 2020; Liu et al., 2022) yield
slightly different predictions and further encourage their consistency
y carefully designing the model structure. Nguyen-Duc et al. (2023)
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Medical Image Analysis 101 (2025) 103450 
proposes cross-adversarial local distribution consistency for the extrac-
ion of information from unlabeled data. Chen et al. (2023a) further
resents decoupled consistency and begins to notice the importance
f uncertainty in pseudo-labels. Yet, it only uses the uncertainty map

as a threshold for selecting pseudo-labels and fails to fully exploit the
information embedded within the uncertainty map. Yang et al. (2023b)
uggests a feature-level perturbation with corresponding consistency in
n attempt to improve edge segmentation performance. However, it
eglects the importance of controlling the intensity of the perturbation
nd the ability of the model to learn to focus on edge regions.

Besides, several studies (Peng et al., 2021a; Zhou et al., 2020; Li
t al., 2020a; Bai et al., 2023; Wang et al., 2023a) in medical image

segmentation have explored different variants and combinations of
mean-teacher or virtual adversarial training methods. Entropy mini-
mization (Grandvalet and Bengio, 2004; Rizve et al., 2021; Pham et al.,
2021) methods are also proposed with additional regularization to
boost semi-supervised learning.

2.2. Boundary in segmentation

Boundary problem is a fundamental component of medical imag-
ing and has a historical background (Cheng et al., 2021; Lee et al.,
2020; Marin et al., 2019; Yuan et al., 2020). For example, Tsai et al.
(2003) proposes an active contour model to find edge information
nd perform prostate segmentation in MRI images. Nain et al. (2007)
resents an active contour formula integrating shape priors based on
pherical wavelets. These methods focused on active contours to facil-

itate edge segmentation, but the edge segmentation remains a great
challenge, as blurry edge regions are difficult to design with hand-
crafted features. Later, Chu et al. (2020) employs edge detectors to
dentify discontinuities and assist in segmentation. While this method
s simple and efficient, it is primarily applicable to the segmenta-
ion of internal discontinuities. Peng et al. (2020) introduces circular

convolution for efficient feature learning on edge regions, yet it is
susceptible to mis-segmentation caused by grayscale non-uniformity
and noise sensitivity. Wang et al. (2022a) introduces a boundary-aware
context neural network that captures detailed information around the
boundary at each stage, which suffers from the undesired complexity
introduced by feature fusion. Tang et al. (2022) uses a 3D ConvNet
architecture and improves feature discrimination between points across
boundaries by sampling and contrasting their representations using
scene contexts at multiple scales. However, this sampling strategy
still has the limitation that the representation derived from shallow
features (before skip connections) may potentially lose a substantial
amount of detailed information, including edge information. Instead
of sampling representations from different layers, our method employs
representations from the last layer of different decoders, guided by
stimated uncertainty. This approach enables our framework to focus
n learning discriminative information in edge regions.

2.3. Contrastive learning

In recent years, there has been a noticeable emergence of powerful
dis)similarity learning methodologies that exploit contrastive loss in

various computer vision tasks (Wang et al., 2022c; Peng et al., 2021b;
Zhao et al., 2021; Wang et al., 2023b). Most of the previous contrastive
learning methods for segmentation were mainly used in self-monitored
pre-training. These methods aim to create a highly effective feature
xtractor that can be applied later to downstream tasks. The contrastive
epresentation ensures the similarity of representations within positive
airs, while simultaneously promoting dissimilarity between different
egative pairs. In general, positive pairs are formed by applying two
istinct transformations (random augmentations) to an image. Cai et al.

(2020) denotes that including a substantial number of negative exam-
les is essential to the effectiveness and success of these methods. Zhao
3 
et al. (2022) proposes a contrastive learning strategy specifically de-
signed to extract relational characteristics between image-level and
patch-level representations. Similarly, Wang et al. (2021b) investigates
the cross-image pixel contrast for semantic segmentation.

Other studies (Alonso et al., 2021; Gu et al., 2022; Zhang et al.,
2023; You et al., 2022; Ma et al., 2023) have introduced semi-
supervised learning frameworks that use unlabeled images and incor-
porate various adaptations of the contrastive loss setup. Alonso et al.
(2021) integrates the pseudo-labels obtained from unlabeled images
into both the cross-entropy loss and the contrastive loss. Peng et al.
(2021b) proposes a self-paced strategy for contrastive learning that
ynamically adjusts the importance of individual samples in the con-

trastive loss. Zhou et al. (2021) proposes a pixel-wise contrastive loss
that primarily focuses on highly confident predicted regions belonging
to the same class, exploiting the consistency between predictions of
teacher-student networks. Similar to Zhou et al. (2021) with applying
eacher-student network, You et al. (2022) incorporates the contrastive
oss along with segmentation and additional consistency losses. Their
pproach specifically focuses on using the contrastive loss to learn
bject shape information using boundary-aware representations, which
re defined based on the predicted signed distance maps generated
y the teacher-student networks. Wang et al. (2022b) introduce the

uncertainty map into contrastive loss to mitigate the possibility of noise
sampling by removing the uncertainty region. However, it also hinders
the model from learning some crucial areas, such as edge regions. Wang
et al. (2023c) proposes a density-guided contrastive learning approach
aimed at moving anchor features located in sparse areas toward cluster
enters approximated by high-density positive keys, which improves
egmentation performance. Later, Chaitanya et al. (2023) presents a

novel self-training strategy based on local contrastive learning, which
uses semantic label information derived from pseudo-labels. However,
their proposed pixel-level contrastive learning encounters challenges
in effectively learning discriminative features without a meticulous
selection of positive and negative pairs. Furthermore, their method
lacks a pseudo-label refinement strategy, essential for improving the
quality of generated pseudo-labels.

To obtain reliable pseudo-labels and optimize the pair selection
strategy, we propose weak-to-strong perturbation consistency and edge-
ware contrastive learning, guided by the uncertainty, and jointly min-
mize the consistency and contrastive loss for improving segmentation
erformance.

3. Method

The objective of this study is to present a comprehensive semi-
upervised learning framework that effectively utilizes unlabeled data

and learns discriminative pixel-wise representations, especially in edge
regions. To achieve it, we introduce a novel weak-to-strong feature-
evel perturbation strategy with consistency loss and edge-aware con-
rastive loss. These components enable the model to leverage suf-
icient semantic information from the unlabeled dataset during the
emi-supervised learning process.

3.1. The overall semi-supervised learning framework

In this work, we present a semi-supervised learning framework, as
depicted in Fig. 1, consisting of a shared encoder 𝐸 and a main decoder
𝐺1. These components together form the segmentation network for
both labeled and unlabeled training data. The other perturbed decoders
𝐺2 to 𝐺𝑀 are also introduced for leveraging extra semantic informa-
tion from the unlabeled training data. Specifically, the segmentation
decoders 𝐺2 to 𝐺𝑀 incorporate semantic-level perturbation modules,
offering different degrees of feature perturbation. To exert better con-
trol over the level of perturbation during the learning process, we adopt
a weak-to-strong feature perturbation strategy, applying it on 𝐺2 to

𝐺𝑀 separately to generate segmentation predictions for each unlabeled
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Fig. 1. Overview of our weak-to-strong perturbation and edge-aware semi-supervised segmentation framework, visualized with 2D inputs for improved clarity. In the semi-supervised
learning branch (𝐸◦𝐺𝑚 with 𝑆 𝑒𝑔 block), the labeled images 𝐱𝑖 are exclusively fed into the Non-perturbed decoder for better initialization of 𝐺1. The unlabeled images 𝐱𝑗 are
processed by weak-to-strong perturbed decoders, including the Non-perturbed decoder, to generate multi-predictions and the aggregation label. In the contrastive learning branch
(𝐸◦𝐺𝑚 with 𝐶 𝑜𝑛𝑡𝑟 block), predictions and uncertainty maps are employed to select discriminative features, facilitating better representation learning. Skip connection between each
stage of the encoder and the corresponding stage of each decoder is omitted for simplicity.
input image. Moreover, we propose an innovative feature perturbation
consistency loss, which encourages consistency between predictions
generated with feature perturbation. Then, an edge-aware contrastive
loss is designed to promote more accurate predictions in edge re-
gions. These loss functions collectively aim to train an outperformance
segmentation model.

3.2. Weak-to-strong feature-level perturbation

The perturbations applied to either the original images or hid-
den representations play a crucial role in consistency regularization
methods. Image-level perturbation methods, such as FixMatch (Sohn
et al., 2020) and UniMatch (Yang et al., 2023a), simultaneously perturb
an image from weak to strong by two operators, i.e., weak pertur-
bation such as cropping, and strong perturbation such as color jit-
ter. This weak-to-strong perturbation relies heavily on careful design
and requires time-consuming optimization of their combinations and
hyper-parameters. Furthermore, the difficulty in finely controlling the
intensity of image-level perturbations limits the model’s capacity to
maintain multi-level consistency against a wider range of perturbations.
On the other hand, feature-level perturbation methods have achieved
remarkable success by constructing a more comprehensive perturbation
hidden space. For example, Ouali et al. (2020) add stochastic noise at
feature maps and Yang et al. (2023a) introduce dropout layer into net-
work. However, these methods overlook the inherent domain-specific
information, such as the standard deviation and mean of the fea-
ture, present in medical images. As the abstraction of features, feature
statistics can capture informative characteristics of the corresponding
domain (such as color, texture, and contrast), according to previous
works (Huang and Belongie, 2017; Li et al., 2021b).
4 
To this end, we propose a novel feature-level perturbation module
(Fig. 2), which utilizes the feature statistics information, to introduce
meaningful and reasonable perturbations at the feature level. The
design of the perturbation module is guided by two fundamental con-
siderations: (1) Different levels of perturbation within the appropriate
range facilitate the exploration of the hidden space of the model,
making efficient use of the unlabeled data. (2) The segmentation results
obtained from unperturbed features are of substantial value. Hence, we
design multiple independent feedforward streams that contain different
levels of perturbation. This design allows the model to achieve targeted
consistency in each stream more directly. Specifically, for each unla-
beled training data 𝐱𝑗 , we consider the 𝑐th channel of the feature map
output from a predetermined layer in the decoder 𝐺𝑚, denoted as 𝐟𝑗 ,𝑐 .
We calculate the mean 𝜇𝑗 ,𝑐 and standard deviation 𝜎𝑗 ,𝑐 of all elements
in 𝐟𝑗 ,𝑐 . Then, 𝐟𝑗 ,𝑐 is randomly perturbed using a linear transformation of
its normalized version 𝐟𝑗 ,𝑐 =

𝐟𝑗 ,𝑐−𝜇𝑗 ,𝑐
𝜎𝑗 ,𝑐 as below,

𝐟𝑗 ,𝑐 = 𝜸𝑗 ,𝑐 ⋅ 𝐟𝑗 ,𝑐 + 𝜷𝑗 ,𝑐 (1)

𝜸𝑗 ,𝑐 = 𝜆 ⋅ 𝜎𝑗 ,𝑐 + (1 − 𝜆) ⋅ 𝜎𝑐 + 𝜖 ⋅ 𝜙𝑐 (2)

𝜷𝑗 ,𝑐 = 𝜆 ⋅ 𝜇𝑗 ,𝑐 + (1 − 𝜆) ⋅ 𝜇𝑐 + 𝜖 ⋅ 𝜓𝑐 , (3)

where (𝜎𝑐 , 𝜙𝑐 ) are the estimated mean and standard deviation of
{𝜎𝑗 ,𝑐}𝐵𝑗=1, and (𝜇𝑐 , 𝜓𝑐 ) the estimated mean and standard deviation of
{𝜇𝑗 ,𝑐}𝐵𝑗=1 over a mini-batch of 𝐵 unlabeled training images, including 𝐱𝑗 ,
during model training. 𝜸𝑗 ,𝑐 and 𝜷𝑗 ,𝑐 are slightly perturbed version of the
standard deviation 𝜎𝑗 ,𝑐 and the mean 𝜇𝑗 ,𝑐 , respectively. The distribution
information (𝜎𝑐 , 𝜙𝑐 , 𝜇𝑐 and 𝜓𝑐) ensure that any perturbed feature
𝐟𝑗 ,𝑐 remains semantically meaningful. The feature-level perturbation
is jointly determined by 𝜆 and 𝜖. While parameter 𝜆 determines the
proportion of retaining the feature’s own semantic information, a scale
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Fig. 2. The feature-level perturbation module incorporated in decoders. Means and
tandard deviations at both the instance and batch levels are applied to each feature
ap at convolutional layers for each image within a mini-batch.

variable 𝜖 is randomly sampled from a uniform distribution within the
range of [−𝜅 , 𝜅] to regulate the intensity of the perturbation. Therefore,
𝜙𝑐 and 𝜓𝑐 play a crucial role in controlling the perturbations within a
reasonable range. It is worth mentioning that the scale variable 𝜖 is
shared across all feature channels ({𝑐}), ensuring that all channels of
the feature maps receive the same level of perturbation. The perturbed
feature maps are then fed into the subsequent convolutional layer(s),
which generate the segmentation probability output for the specific
feature-level perturbation of the input 𝐱𝑗 . This perturbation is incorpo-
rated into each layer of the decoders, allowing our model to explore
a wider range of hidden space. Compared to the method of Yang
t al. (2023b), which employs a single decoder for segmentation,
ur method introduces multi-decoder architecture to enable weak-to-
trong feature perturbation, leading to a wider exploration of feature

space. Unlike (Yang et al., 2023b)’s method, which applies varying
erturbation intensities in the final layer, our approach integrates

consistent intensity perturbations, controlled by 𝜖, across each layer.
Additionally, our method further introduces the batch-level mean 𝜎𝑐 of
{𝜎𝑗 ,𝑐}𝐵𝑗=1 and 𝜇𝑐 of {𝜇𝑗 ,𝑐}𝐵𝑗=1 for a more comprehensive perturbation.

3.3. Feature-perturbed consistency for semi-supervised learning

In semi-supervised learning, a commonly employed strategy is to
esign a consistency loss on unlabeled training data. The underlying
oncept is to encourage the model to generate similar outputs when
resented with two or more transformed versions of the input. In our
pproach, the segmentation output probabilities predicted by the weak-
o-strong perturbed features provide a natural foundation for designing
he consistency loss. In detail, let 𝐷𝑢 = {𝐱𝑗 , 𝑗 = 1,… , 𝐽} denote the
nlabeled training set, which consists of 𝐽 unlabeled images. Each
mage contains 𝐾 elements (pixels or voxels). For the 𝑗th training
nlabeled data 𝐱𝑗 ∈ 𝐷𝑢, we perform 𝑀 independent perturbations on
ifferent decoders as described above, resulting in𝑀 output probability
aps from the segmentation decoders 𝐺1 to 𝐺𝑀 . Let {𝐩𝑗 ,𝑘,𝑚, 𝑚 =
,… , 𝑀} denote the 𝑀 output probability vectors corresponding to
he 𝑘th element of the input 𝐱𝑗 . Given that there are no annotations
vailable for any image in 𝐷𝑢, and the potential bias introduced by
he perturbations in the decoders, the results 𝐩𝑗 ,𝑘,𝑚 obtained by the
odel may be unreliable. Averaging 𝑚 predictions to produce the final
rediction, as in previous works (Liu et al., 2022; Luo et al., 2022),

is insufficient to eliminate errors in the predictions. Therefore, we
employ uncertainty estimation and an uncertainty-weighted integration
strategy in our framework. Specifically, the uncertainty of each pixel for
the 𝑀 preliminary predictions can be calculated by (𝐩𝑗 ,𝑘,𝑚), which
represents the entropy of the discrete probability 𝐩𝑗 ,𝑘,𝑚. Naturally,
ixels with low uncertainty should have a greater contribution to the
5 
final prediction result, which can be defined as a weight map, 𝜶𝑗 ,𝑘,𝑚 =
𝑒−(𝐩𝑗 ,𝑘,𝑚)∕∑𝑀

𝑖=1 𝑒
−(𝐩𝑗 ,𝑘,𝑖), to highlight areas of higher confidence during

the aggregation process. Consequently, the aggregated prediction of
segmentation �̄�𝑗 ,𝑘 can be formulated as �̄�𝑗 ,𝑘 =

∑𝑀
𝑚=1 𝜶𝑗 ,𝑘,𝑚 ⋅ 𝐩𝑗 ,𝑘,𝑚. The

uncertainty of the aggregated prediction can be calculated by (�̄�𝑗 ,𝑘).
Note that our network architecture incorporates multiple decoders,
simultaneously performing several times uncertainty estimates for a
pixel. This design reduces the potential negative impact of erroneous
uncertainty estimates from single branches. Therefore, the aggregation
approach helps mitigate the unreliability caused by the lack of anno-
tations and the introduced perturbations, resulting in more robust and
accurate segmentation results.

Then the consistency loss based on feature perturbations can be
represented as,

𝑢 =
1

𝐽 ⋅𝐾

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
(𝐩𝑗 ,𝑘,1,… ,𝐩𝑗 ,𝑘,𝑀 ) , (4)

where the consistency assessment (⋅) can be any appropriate function
hat quantifies the similarity or consistency among all the 𝑀 outputs
𝐩𝑗 ,𝑘,𝑚, 𝑚 = 1,… , 𝑀} for each element in the image. In our design, we

take inspiration from recent research (Luo et al., 2022) and develop a
consistency measurement function as,

(𝐩𝑗 ,𝑘,1,… ,𝐩𝑗 ,𝑘,𝑀 ) = 1
𝑀

𝑀
∑

𝑚=1

𝝎𝑗 ,𝑘,𝑚‖𝐩𝑗 ,𝑘,𝑚 − �̄�𝑗 ,𝑘‖
∑𝑀
𝑚=1 𝝎𝑗 ,𝑘,𝑚

, (5)

where 𝝎𝑗 ,𝑘,𝑚 = exp{−(𝐩𝑗 ,𝑘,𝑚)}. The term ‖𝐩𝑗 ,𝑘,𝑚 − �̄�𝑗 ,𝑘‖ represents the
𝑝 norm (𝑝 = 1 in this study) of the difference between a single output

prediction 𝐩𝑗 ,𝑘,𝑚 and the aggregated prediction �̄�𝑗 ,𝑘. Minimization of
this term would encourage the predictions generated from all the 𝑀
perturbed features to be similar. Besides, entropy serves as an indicator
f prediction uncertainty. A higher entropy value corresponds to a
ower weight 𝜔𝑗 ,𝑘,𝑛. This weighting mechanism directs the consistency
easurement function to focus more on confident predictions rather

han unconfident (i.e., uncertainty) ones, ensuring that the confident
redictions are consistent. This is justified since uncertain predictions
ften occur near the edge region.

3.4. Edge-aware contrastive learning

Despite the impressive performance of many semi-supervised learn-
ing methods in segmentation tasks, they often share a common limita-
ion. These methods are adept at identifying the main body of the target
bject for segmentation, but they may lack the sensitivity to accurately
etect edge areas or small foreground regions. To tackle this issue,
e propose an edge-aware contrastive learning loss. Our objective is

o learn discriminative pixel representations based on their predictions
nd uncertainty. As illustrated in Fig. 1, we introduce two branches at

the end of each decoder: one dedicated to the segmentation task and the
other focused on contrastive learning. This design allows us to leverage
the learned representations in the feature space to optimize the model
for accurate segmentation of edge regions. The proposed edge-aware
contrastive learning consists of two components:

Contrastive Learning: Once an image 𝐱𝑗 is processed through the
ommon network 𝐸◦𝐺𝑚 with the contrastive branch, the resulting
eature map is denoted as 𝐯(𝐱𝑗 ). This feature map has dimensions of
×𝑊 ×𝐷, where 𝐻 and 𝑊 correspond to the dimensions of the input

mage, and 𝐷 represents the number of channels in the feature map.
e can define the set of pixel indexes that belong to a foreground class
for image 𝐱𝑗 as 𝑆𝑐 (𝐱𝑗 ), where 𝑆𝑐 (𝐱𝑗 ) represents the collection of pixel

ndexes that are predicted to the 𝑐th class for unlabeled samples. Here,
𝑐 (𝐱𝑗 ) is defined for 1 ⩽ 𝑐 ⩽ 𝐶, where 𝐶 denotes the total number of
lasses for segmentation. For two randomly sampled samples from 𝐷𝑢,
𝑗 and 𝐱′𝑗 , the contrast loss function can be defined as,

𝑟(𝐱𝑗 , 𝐱′𝑗 ) =
1

𝐽 ⋅ 𝐶

𝐽
∑

𝐶
∑ 1

|𝑆 (𝐱 )|
∑

(𝐯𝑖(𝐱𝑗 ), �̄�𝑐 (𝐱′𝑗 )), (6)

𝑗=1 𝑐=1 𝑐 𝑗 𝑖∈𝑆𝑐 (𝐱𝑗 )
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where 𝐯𝑖(𝐱𝑗 ) presents the feature vector of 𝐱𝑗 at pixel index 𝑖, which is
𝐷-dimensional, and �̄�𝑐 (𝐱′𝑗 ) denotes the mean pixel representation of 𝐱′𝑗
or class 𝑐, it is formulated as,

�̄�𝑐 (𝐱′𝑗 ) =
1

|𝑆𝑐 (𝐱′𝑗 )|
∑

𝑖∈𝑆𝑐 (𝐱′𝑗 )
𝐯𝑖(𝐱′𝑗 ). (7)

Then the contrastive loss, denoted as (⋅, ⋅), between a pixel represen-
tation feature vector and a mean pixel representation belonging to a
potentially different image, is defined for a given class 𝑐 as,

(𝐯𝑖(𝐱𝑗 ), �̄�𝑐 (𝐱′𝑗 )) = − log 𝑒𝑠𝑖𝑚(𝐯𝑖(𝐱𝑗 ),�̄�
𝑐 (𝐱′𝑗 ))∕𝜏

∑

𝑛∈𝐶 𝑒
𝑠𝑖𝑚(𝐯𝑖(𝐱𝑗 ),�̄�𝑛(𝐱′𝑗 ))∕𝜏

, (8)

where 𝑠𝑖𝑚(𝐫, 𝐬) = 𝐫𝑇 𝐬∕‖𝐫‖‖𝐬‖ represents the cosine similarity, which
measures the similarity between two representation vectors 𝐫 and 𝐬.
The temperature scaling factor, denoted as 𝜏, is used to adjust the scale
of the similarity measurement.

Edge-aware Pixel Selection: In the proposed pixel-wise contrastive
oss Eq. (6), each pixel representation 𝐯𝑖(𝐱𝑗 ) of image 𝐱𝑗 at pixel location
is designed to match the mean representation vector �̄�𝑛(𝐱′𝑗 ), 𝑛 ∈ 𝐶.
ubsequently, we pull similar representations together for pixels where
𝑖(𝐱𝑗 ) has the same label with �̄�𝑛(𝐱′𝑗 ), while simultaneously pushing
𝑖(𝐱𝑗 ) away from �̄�𝑛(𝐱′𝑗 ) if the corresponding pixel vectors and the mean
epresentation belong to different classes in Eq. (8). Indeed, efficient

representation selection strategy is the key to contrastive learning.
Randomly sampling all pixel representations from 𝐱𝑗 and 𝐱′𝑗 to calculate
he contrast loss poses a formidable challenge in terms of computational
emory. Moreover, this approach does not facilitate the learning of
iscriminative representations, especially edge regions. Wang et al.

(2022b) attempted to reduce the possibility of noise sampling by re-
oving high uncertainty regions in the uncertainty map to ensure the

effectiveness of contrastive learning. However, they overlook the fact
hat regions with high uncertainty typically present at the boundaries,
hich are crucial for capturing significant discriminative representa-

ions. Therefore, we design a more efficient pixel selection strategy
amed edge-aware pixel selection. Specifically, we sort each feature
ector 𝐯𝑖(𝐱𝑗 ) and 𝐯𝑖(𝐱′𝑗 ) based on its corresponding uncertainty values

obtained from the segmentation branch. For the pixels in 𝑆𝑐 (𝐱𝑗 ), we
initially discard a certain percentage of pixels with the highest un-
ertainty, as these pixels, typically presented in edge regions, may be
ubject to misclassification by the decoders. Then, a subset of pixels
ith high uncertainty, typically located at the edges, are selected to

orm 𝑆𝑐 (𝐱𝑗 ). With respect to the pixels in 𝑆𝑐 (𝐱′𝑗 ), we first select those
with low uncertainty, such as the top sixty percent, and then randomly
select the pixels from the subset to construct 𝑆𝑐 (𝐱′𝑗 ) for the purpose of
computing the mean representations. This selective approach enables
the model to mitigate computational memory requirements while pro-
moting our framework to learn discriminative pixel representations,
particularly in edge regions. By prioritizing pixels with high uncertainty
and incorporating them into 𝑆𝑐 (𝐱𝑗 ), our model acquires powerful repre-
sentation ability in challenging regions. This allows our framework to
improve its ability to accurately segment edge regions, which is crucial
for achieving accurate and reliable segmentation results.

Finally, the total semi-supervised learning loss function can then be
esigned as,

 = 𝑠 + 𝜆1𝑢 + 𝜆2𝑟 , (9)

where 𝑠 is supervised loss (e.g., cross-entropy loss) only on the labeled
training set, 𝑢 and 𝑙 are the feature-perturbed consistency loss and
the edge-aware contrastive loss, respectively, on the unlabeled sets. 𝜆1

and 𝜆2 are two coefficients to balance the three loss terms.

6 
4. Experiment

4.1. Datasets and evaluation

In this study, we performed evaluations of our method and per-
formed comparisons with several related works on three publicly avail-
able datasets: the Automated Cardiac Diagnosis Challenge segmenta-
tion dataset (2017 ACDC), the whole brain tumor segmentation dataset
(BraTS2020), and the Left Atrium dataset from Atrial Segmentation
Challenge (LA). It is important to note that the ACDC dataset con-
sists of 2D slices, while the BraTS and LA datasets consist of 3D
volumes. We referred to and followed image preprocessing as in pre-
vious works (Chaitanya et al., 2019; Chen et al., 2020; Hooper et al.,
2020), where all images were bias corrected using N4 (Tustison et al.,
2010) algorithm. Random affine transformation (i.e., scaling, rotation,
translation) and random global intensity transformation (brightness
and contrast) were also applied.

2017 ACDC dataset: The ACDC (Bernard et al., 2018) segmentation
dataset consists of 100 short-axis MR-cine T1 3D volumes of cardiac
natomy. These volumes were acquired using both 1.5T and 3T scan-

ners, with a spatial resolution ranging from 1.37 to 1.68 mm2/pixel.
This dataset comprises five categories of images, i.e., Normal (NOR),
previous myocardial infarction (MINF), dilated cardiomyopathy (DCM),
ypertrophic cardiomyopathy (HCM), and abnormal right ventricle

(RV). Each image in the dataset requires segmentation of three cat-
egories: the right ventricle (RV), left ventricle (LV) cavities, and the

yocardium (specifically the epicardial contour). We randomly select
5, 5 and 20 subjects for training, validation and testing respectively.
he five categorizations (NOR, MINF, DCM, HCM, RV) are guaranteed
o be included when constituting the labeled dataset and validation set.
or pre-processing, the intensity of each scan is rescaled to [0, 1].
BraTS2020 dataset: The BraTS2020 (Menze et al., 2014) dataset

ontains 496 subjects, each containing four modalities (FLAIR, T1, T1ce
nd T2) with an isotropic 1 mm3 resolution. In this study, the FLAIR
odality is adopted for semi-supervised segmentation of the whole

tumors. The dataset was randomly divided into training, validation, and
test sets, consisting of 380, 26, and 90 scans, respectively. As part of
the preprocessing step, each instance was normalized using its channel-
wise means and standard deviations, followed by intensity rescaling to
the range of [0, 1].

LA dataset: The dataset (Xiong et al., 2021) comprises 100 3D
gadolinium-enhanced MR imaging (GE-MRI) scans along with left
atrium segmentation masks. The scans have an isotropic resolution of
0.625 × 0.625 × 0.625 mm3. We divided the dataset of 100 scans into 80
scans for training and 20 scans for evaluation. Furthermore, to focus
on the heart region, all scans were cropped, centering around this area.
Additionally, we applied normalization to ensure that the data had a
zero mean and unit variance.

Baselines: To demonstrate the superior performance of our pro-
osed method in semi-supervised learning, we performed a compre-
ensive comparison of lesion and organ segmentation performance
etween our method and several state-of-the-art approaches. The eval-
ated methods included nnU-Net (Isensee et al., 2021), SASSnet (Li

et al., 2020b), UAMT (Yu et al., 2019), Tri-U-MT (Wang et al., 2021a),
TC (Luo et al., 2021a), CoraNet (Shi et al., 2021), SPCL (Peng

et al., 2021b), MC-Net+ (Wu et al., 2022), URPC (Luo et al., 2022),
LCT (Chaitanya et al., 2023), DGCL (Wang et al., 2023c), CAML (Gao

et al., 2023), DCNet (Chen et al., 2023a) and SFPC (Yang et al.,
2023b), where PLCT and DGCL are based on contrastive learning.

mong these methods, only nnU-Net was trained in a fully supervised
anner, serving as a performance upper bound. Following previous
orks (Wang et al., 2021a; Luo et al., 2022; Yu et al., 2019), we employ

the top-performing model identified through validation set evaluation
for inference on the ACDC and BraTS2020 datasets, while opting for
the model from the final epoch for inference on the LA dataset. To
ensure the reliability and consistency of our experimental results, we
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Fig. 3. Visual comparisons between the proposed method and strong baseline methods (second to sixth column) on one image from BraTS2020 dataset. During training, 5% of
the training samples were annotated. Green and blue contours denote prediction and ground-truth edges, respectively. Fourth row (in red): view of the 3D segmentation lesions.
Last column: pixel-wise uncertainty of the aggregation prediction using entropy.
conducted all experiments with five different cross-validations and
recorded the average results, standard deviation, and 𝑝-value.

Evaluation metrics: To quantitatively evaluate the performance of
our framework, we employed four commonly used evaluation metrics:
the Dice Similarity Coefficient (DSC), the Jaccard Index (Jaccard), the
95% Hausdorff Distance (95HD), and the Average Surface Distance
(ASD).

4.2. Implementation details

We re-implemented all compared methods and conducted the ex-
periments under an identical environment (Hardware: Intel(R) Xeon(R)
Gold 5220R CPU@2.20 GHz, NVIDIA GeForce RTX 3090 GPU; Soft-
ware: PyTorch 1.13.0, CUDA 12.2, and Python 3.8.0). The backbone
segmentation network is UNet (Ronneberger et al., 2015) and 3D-
UNet (Çiçek et al., 2016) respectively. The contrastive branch is com-
posed of two 1 × 1 convolution layers that generate feature maps with
dimensions 𝐻×𝑊 ×𝐷, where 𝐷 is set to 16. The network was optimized
using the SGD optimizer with a weight decay of 1e-4 and momentum
of 0.9. Training was performed for 6000 iterations, starting with an
initial learning rate of 0.01 that decayed by a factor of 0.1 every 2500
iterations. The batch size was set to 8, consisting of 4 labeled images
and 4 unlabeled images. For 3D volumes, we randomly cropped sub-
volumes of size 112 × 112 × 112 as input to the network. For 2D
slices, we resized the input to 256 × 256. Data augmentations, including
random cropping, flipping, and rotation, were employed to prevent
overfitting. To obtain the final segmentation results for 3D volumes,
we utilized a sliding window strategy. For subtle perturbations at the
semantic level, we set the perturbation parameter 𝜅 to 0.2, and 𝜆 to 0.9.
The weight 𝜆1 was determined by a time-dependent Gaussian warming
up function, as elaborately designed in previous studies (Tarvainen
and Valpola, 2017; Yu et al., 2019). It balanced the weight between
supervised and unsupervised learning in a stable manner. The function
was defined as 𝜆(𝑡) = 𝜔𝑚𝑎𝑥 ⋅ 𝑒

−5(1− 𝑡
𝑡𝑚𝑎𝑥

)2 , where 𝜔𝑚𝑎𝑥 represents the final
regularization weight, 𝑡 is the current training round and 𝑡𝑚𝑎𝑥 denotes
the maximum training round. Based on the relevant study (Yu et al.,
2019), we set 𝜔𝑚𝑎𝑥 to 0.1 for all experiments. In the construction of
𝑆𝑐 (𝐱𝑗 ), 3% of pixels with the highest uncertainty were initially discard.
The coefficient 𝜆2 was empirically set to 0.5 to achieve the desired
balance between supervised and unsupervised learning.
7 
4.3. Performance on the BraTS2020 dataset

Quantitative results obtained on the BraTS2020 dataset using dif-
ferent proportions of labeled samples in the training set are presented
in Table 1 (left half). Our proposed method consistently outperforms
all the compared semi-supervised methods, achieving the highest DSC
values of 81.82%, 85.98%, 87.79% and the highest Jaccard values of
70.36%, 75.63%, 78.40% in three different scenarios. Moreover, our
method shows the lowest 95HD values of 12.19, 9.97, 8.18, and the
lowest ASD values of 3.47, 2.64, 2.01, respectively. Compared to the
strongest baseline method, SFPC, with only 5% labeled samples, our
proposed method achieves absolute improvements of 1.06% in DSC,
1.18% in Jaccard, 2.68 in 95HD, and 0.55 in ASD. Furthermore, when
the proportion of labeled data is increased to 20%, our model achieves
comparable results to the nn-UNet model trained with 100% labeled
data, with a DSC of 87.79% compared to the upper-bound model’s
score of 89.58%. As depicted in Fig. 3, our approach (seventh column)
presents superior accuracy in identifying edge regions (indicated by
yellow arrows and ellipses in the 2D and 3D views, respectively),
outperforming other baseline methods (second to sixth column) on
the BraTS2020 dataset. The uncertainty in the pixel-level predictions
obtained from our method (last column) effectively highlights the
challenging areas for segmentation, revealing that the uncertain regions
are located mainly along the edge of the lesions.

4.4. Performance on the LA dataset

Similar results were obtained on the LA dataset. As shown in Table 1
(middle half), our method outperforms all strong semi-supervised base-
lines on all four evaluation metrics. In particular, when only 5% of
the training images are annotated, our method has a clear superiority.
While PLCT achieves the best performance among the existing methods
with a DSC of 87.63% and a Jaccard index of 78.69%, our method
outperforms it with a gain of 1.39% in DSC and 1.14% in Jaccard. In
addition, our method slightly outperforms all existing methods when
10% and 20% of the training images are annotated. Furthermore, our
method demonstrates even greater superiority when trained with a
smaller number of labeled samples, highlighting its capability to effec-
tively leverage unlabeled scans for performance improvement. Fig. 4
provides a visual comparison based on 5% labeled data, illustrating two
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Table 1
Quantitative comparisons with other state-of-the-art methods on the BraTS2020, LA and 2017 ACDC datasets. ↑ indicates that larger values are better and ↓ indicates that smaller values are better.

Method % scans used BraTS2020 (3D) LA (3D) 2017 ACDC (2D)

Labeled Unla-
beled

DSC (%) ↑ Jaccard (%) ↑ 95HD (mm) ↓ ASD (mm) ↓ DSC (%) ↑ Jaccard (%) ↑ 95HD (mm) ↓ ASD (mm) ↓ DSC (%) ↑ Jaccard (%) ↑ 95HD (mm) ↓ ASD (mm) ↓

UAMT (Yu et al., 2019) 5 95 49.46± 2.51* 38.46± 1.86* 19.57± 3.28* 6.54± 0.86* 78.69± 1.26* 65.56± 1.31* 27.69± 2.84* 8.04± 1.29* 51.23± 1.96* 41.82± 1.62* 17.13± 2.82* 7.76± 2.01*
SASSNet (Li et al., 2020b) 51.82± 1.74* 43.93± 1.42* 23.47± 2.83* 7.47± 1.09* 80.04± 1.12* 67.36± 1.03* 25.29± 3.16* 7.05± 1.32* 58.47± 1.74* 47.04± 2.02* 18.04± 3.63* 7.31± 1.53*
Tri-U-MT (Wang et al.,
2021a)

53.95± 1.97* 44.33± 2.18* 19.68± 3.06* 7.29± 0.84* 80.47± 1.19* 67.07± 1.07* 23.07± 3.03* 7.62± 1.02* 59.15± 2.01* 47.37± 1.82* 17.37± 2.77* 7.34± 1.31*

DTC (Luo et al., 2021a) 56.72± 2.04* 45.78± 1.67* 17.38± 4.31* 6.28± 1.22* 80.68± 1.06* 68.35± 1.64* 22.97± 2.57* 7.07± 0.71* 57.09± 1.57* 45.61± 1.23* 20.63± 2.61* 7.05± 1.94*
CoraNet (Shi et al., 2021) 57.97± 1.83* 46.40± 1.64* 19.52± 2.80* 5.83± 0.85* 80.94± 1.35* 68.42± 1.26* 19.54± 2.10* 5.09± 1.32* 59.91± 2.08* 48.37± 1.75* 15.53± 2.23* 5.96± 1.42*
SPCL (Peng et al., 2021b) 78.73± 1.54* 67.90± 1.29* 16.26± 1.68* 4.47± 1.08* 87.36± 0.95* 78.21± 0.91* 13.06± 1.14* 3.37± 0.96* 81.82± 1.24 70.62± 1.04 5.96± 1.62 2.21± 0.29
MC-Net+ (Wu et al., 2022) 58.91± 1.47* 47.24± 1.36* 20.82± 3.35* 7.14± 1.12* 83.95± 1.64* 72.45± 1.47* 14.99± 2.28* 3.24± 1.36* 63.47± 1.75* 53.13± 1.41* 7.38± 1.68* 2.37± 0.32*
URPC (Luo et al., 2022) 60.48± 2.01* 50.69± 1.99* 18.21± 3.27* 7.12± 0.95* 82.67± 0.83* 70.66± 0.77* 16.37± 1.24* 3.80± 0.75* 62.57± 1.18* 52.75± 1.36* 7.79± 1.85* 2.64± 0.36*
PLCT (Chaitanya et al.,
2023)

65.74± 2.17* 55.40± 1.85* 16.61± 3.04* 6.85± 1.39* 87.63± 0.71* 78.69± 0.62* 12.28± 0.89* 2.62± 0.77* 78.42± 1.45* 67.43± 1.25* 6.54± 1.62* 2.48± 0.24*

DGCL (Wang et al., 2023c) 80.21± 0.75* 68.86± 0.63* 14.91± 1.53* 4.63± 1.16* 87.47± 0.97* 78.37± 0.87* 12.64± 1.14* 2.71± 0.93* 80.57± 1.12* 68.74± 0.96* 6.04± 1.73 2.17± 0.30
CAML (Gao et al., 2023) 77.86± 0.96* 66.42± 1.37* 15.21± 1.74* 5.10± 1.12* 87.42± 0.86* 78.30± 0.78* 12.63± 0.97* 3.47± 0.72* 79.04± 0.83* 68.45± 0.97* 6.28± 1.79* 2.24± 0.26
DCNet (Chen et al., 2023a) 78.52± 1.21* 67.81± 1.07* 17.37± 1.48* 4.32± 0.96* 86.56± 0.74* 75.55± 0.75* 11.44± 0.91* 2.54± 0.83* 71.57± 1.58* 61.12± 1.19* 8.37± 1.92* 4.08± 0.84*
SFPC (Yang et al., 2023b) 80.76± 0.74 69.18± 0.83 14.87± 1.92* 4.02± 0.75* 86.81± 0.65* 78.49± 0.63* 11.70± 0.74* 2.88± 0.69* 80.52± 1.03* 68.73± 0.88* 6.08± 1.47 2.14± 0.22
Ours 81.82± 0.77 70.36± 0.71 12.19± 1.31 3.47± 0.51 89.02± 0.51 79.83± 0.57 10.23± 0.71 2.18± 0.55 82.39± 0.82 71.16± 0.75 5.67± 1.21 2.01± 0.17

UAMT (Yu et al., 2019) 10 90 81.04± 1.46* 68.88± 1.57* 17.27± 3.35* 6.25± 1.63* 85.69± 0.68* 75.42± 0.57* 16.24± 2.23* 4.45± 0.47* 81.86± 1.25* 71.07± 1.43* 12.92± 1.68* 3.49± 0.64*
SASSNet (Li et al., 2020b) 82.36± 2.08* 71.03± 2.35* 14.80± 3.72* 4.11± 1.54* 85.73± 0.72* 75.78± 0.69* 14.24± 2.58* 4.62± 0.93* 84.61± 1.97* 74.53± 1.78* 6.02± 1.54* 1.71± 0.35
Tri-U-MT (Wang et al.,
2021a)

82.83± 1.35* 71.52± 1.21* 15.19± 2.86* 3.57± 1.30 85.68± 0.83* 75.74± 0.75* 14.07± 0.62* 4.29± 0.27* 84.06± 1.69* 74.32± 1.77* 7.41± 1.63* 2.59± 0.51*

DTC (Luo et al., 2021a) 81.98± 2.41* 70.41± 2.73* 16.27± 3.62* 3.62± 1.71 84.86± 1.37* 74.19± 1.14* 13.25± 0.56* 3.28± 0.44* 82.91± 1.65* 71.61± 1.81* 8.69± 1.84* 3.04± 0.59*
CoraNet (Shi et al., 2021) 81.38± 1.68* 70.01± 1.83* 13.94± 2.72* 3.95± 1.26* 83.60± 1.73* 72.14± 1.26* 17.06± 1.58* 4.07± 0.52* 84.56± 1.53* 74.41± 1.49* 6.11± 1.15* 2.35± 0.44*
SPCL (Peng et al., 2021b) 84.65± 1.16 73.91± 1.19* 12.24± 1.47* 3.28± 0.42 89.17± 0.79 80.93± 0.64 7.68± 0.81 2.51± 0.33 87.57± 1.15 78.63± 0.89 4.87± 0.79 1.31± 0.27
MC-Net+ (Wu et al., 2022) 83.93± 1.73* 72.34± 1.69* 13.52± 2.74* 3.37± 1.13 87.83± 1.31* 78.45± 1.46* 10.49± 0.94* 2.78± 0.53* 86.78± 1.41* 77.31± 1.27* 6.92± 0.95* 2.04± 0.37*
URPC (Luo et al., 2022) 84.23± 1.41 72.37± 1.26* 11.52± 1.79 3.26± 1.14 84.52± 0.29* 72.63± 0.32* 11.26± 0.69* 2.99± 0.36* 85.18± 0.98* 74.65± 0.83* 5.01± 0.79 1.52± 0.26
PLCT (Chaitanya et al.,
2023)

83.66± 1.82* 71.99± 1.67* 13.68± 1.29* 3.59± 1.02 89.41± 0.63 81.00± 0.85 7.34± 0.72 2.68± 0.24* 86.83± 1.17* 77.04± 0.83* 6.62± 0.86* 2.27± 0.42*

DGCL (Wang et al., 2023c) 84.02± 1.24* 72.16± 1.07* 12.98± 1.28* 3.02± 0.96 89.68± 0.64 81.37± 0.59 7.91± 0.68 2.46± 0.31 87.74± 1.06 78.82± 1.22 4.74± 0.73 1.56± 0.24
CAML (Gao et al., 2023) 84.34± 1.03 73.84± 0.92* 12.02± 1.84* 3.31± 0.58 89.53± 0.62 81.04± 0.71 9.72± 0.84* 2.64± 0.25 87.67± 0.83 78.70± 0.91 4.97± 0.62 1.35± 0.17
DCNet (Chen et al., 2023a) 83.39± 0.97* 71.94± 0.88* 11.93± 1.24* 3.50± 0.33 87.96± 0.76* 78.66± 0.69* 8.84± 0.78* 2.99± 0.29* 87.81± 0.88 78.96± 0.94 4.84± 0.81 1.23± 0.21
SFPC (Yang et al., 2023b) 85.01± 0.89 74.67± 1.14* 10.73± 1.36 3.03± 0.31 89.59± 0.57 81.26± 0.61 7.56± 0.69 2.81± 0.32* 87.76± 0.92 78.94± 0.83 4.90± 0.74 1.28± 0.23
Ours 85.98± 0.75 75.63± 0.62 9.97± 1.22 2.64± 0.27 90.23± 0.53 81.52± 0.51 7.16± 0.48 1.95± 0.15 88.92± 0.64 79.65± 0.55 4.32± 0.47 1.19± 0.18

UAMT (Yu et al., 2019) 20 80 84.95± 1.32* 74.71± 1.25* 12.18± 2.89* 2.45± 0.31 88.36± 0.41* 79.23± 0.83* 9.76± 1.53* 3.07± 0.69* 85.96± 0.97* 76.96± 0.83* 9.17± 1.25* 1.42± 0.22
SASSNet (Li et al., 2020b) 84.74± 2.23* 74.04± 2.17* 9.38± 2.57 2.61± 0.44 88.31± 0.59* 79.25± 0.57* 9.47± 1.74* 3.48± 1.18* 87.18± 1.27* 77.51± 1.44* 5.28± 0.86* 2.47± 0.45*
Tri-U-MT (Wang et al.,
2021a)

85.11± 1.48* 74.71± 1.29* 8.80± 2.37 3.11± 0.50* 88.19± 0.67* 79.12± 0.53* 8.35± 0.71* 3.19± 0.48* 87.32± 1.14* 78.24± 0.99* 5.53± 0.79* 1.56± 0.36

DTC (Luo et al., 2021a) 84.89± 2.04* 74.61± 1.83* 12.67± 2.97* 3.42± 0.48* 88.06± 0.42* 78.71± 0.49* 10.13± 0.94* 2.62± 0.47* 86.43± 0.82* 77.12± 0.94* 6.24± 0.73* 2.27± 0.38*
CoraNet (Shi et al., 2021) 84.46± 1.53* 73.84± 1.72* 9.03± 2.26 2.60± 0.38 87.95± 0.69* 78.60± 0.85* 11.04± 0.68* 3.47± 0.82* 86.51± 1.29* 77.21± 1.17* 6.40± 0.98* 2.16± 0.46*
SPCL (Peng et al., 2021b) 85.92± 0.86* 75.49± 1.08* 9.74± 1.29 2.79± 0.41 90.19± 0.52 82.55± 0.54* 7.28± 0.39* 2.31± 0.28 88.65± 1.06* 79.32± 0.89* 4.94± 0.52 1.87± 0.24
MC-Net+ (Wu et al., 2022) 85.40± 1.13* 75.09± 0.94* 9.68± 1.62 2.98± 0.39* 90.15± 0.44* 82.53± 0.48* 6.56± 0.43 2.16± 0.25 88.46± 0.96* 79.23± 1.02* 5.73± 0.83* 1.71± 0.42
URPC (Luo et al., 2022) 85.81± 0.97* 75.44± 0.86* 8.86± 1.24 2.52± 0.32 89.97± 0.38* 81.30± 0.52* 9.33± 0.46* 3.46± 0.24* 87.48± 0.83* 78.55± 0.77* 5.13± 0.62* 1.56± 0.40
PLCT (Chaitanya et al.,
2023)

85.53± 1.06* 75.29± 0.91* 8.64± 1.22 2.89± 0.24* 90.12± 0.21* 82.46± 0.39* 7.08± 0.53* 2.44± 0.20* 88.41± 0.74* 79.21± 0.82* 5.76± 0.59* 2.08± 0.51*

DGCL (Wang et al., 2023c) 85.79± 1.12* 75.43± 1.24* 8.39± 1.36 2.51± 0.26 90.31± 0.47 82.87± 0.61 6.81± 0.72 2.03± 0.23 88.75± 0.53* 80.19± 0.47 5.28± 0.48* 1.79± 0.33
CAML (Gao et al., 2023) 86.12± 0.89* 75.66± 0.94* 9.53± 1.41 3.62± 0.57* 90.64± 0.38 83.12± 0.42 6.34± 0.31 1.93± 0.30 89.22± 0.66 80.62± 0.72 5.16± 0.41* 1.51± 0.26
DCNet (Chen et al., 2023a) 86.20± 0.73* 75.79± 0.84* 8.46± 1.07 2.71± 0.32 90.09± 0.44* 81.68± 0.48* 8.25± 0.42* 2.64± 0.35* 89.42± 0.60 80.69± 0.58 4.83± 0.25 1.12± 0.21
SFPC (Yang et al., 2023b) 86.48± 0.78 76.54± 0.83* 8.61± 0.94 2.33± 0.29 90.63± 0.39 82.99± 0.45 6.65± 0.57 2.09± 0.12 89.30± 0.47 80.64± 0.54 5.02± 0.46* 1.43± 0.27
Ours 87.79± 0.69 78.40± 0.72 8.18± 0.86 2.01± 0.23 91.05± 0.35 83.45± 0.38 5.94± 0.36 1.67± 0.14 90.23± 0.39 81.24± 0.41 4.01± 0.22 1.06± 0.19

nn-UNet 100 0 89.58± 0.45 81.33± 0.53 7.92± 0.47 1.78± 0.14 93.08± 0.11 85.27± 0.36 4.07± 0.33 1.22± 0.20 92.71± 0.31 85.35± 0.27 1.57± 0.15 0.46± 0.12

* Means our method is significantly better than the compared method with 𝑝 < 0.05 via paired t-test.
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Fig. 4. Visual comparisons between the proposed method and strong baseline methods (second to sixth column) on two representative images from LA dataset. During training,
5% of training samples were annotated. Green and blue contours denote prediction and ground-truth edges, respectively. Second and fourth row (in red): view of the segmentation
3D organ. Last column: pixel-wise uncertainty of the aggregation prediction using entropy.
representative segmentation results from our method (seventh column)
and the strong baselines (second to sixth column). This visual com-
parison further confirms the superior segmentation performance of our
method, particularly in accurately delineating region edges (indicated
by yellow rectangles and ellipses in the 2D and 3D views, respectively).

4.5. Performance on the 2017 ACDC dataset

To assess the scalability of our method, we conducted further eval-
uations on the 2D multi-class organ segmentation task on the 2017
ACDC dataset. The corresponding results of our method and other
semi-supervised methods on the test dataset are displayed in Table 1
(right half), where our method demonstrates significant performance
superiority compared to the other methods when trained with only 5%
labeled data. While SPCL and DGCL achieve the top two performances
among the other methods with a DSC of 81.82% and 80.57%, our
method achieves an absolute improvement of 0.57% and 1.82%. Even
when the proportion of annotated training data is increased to 20%, our
method maintains a slight margin of superiority over the other existing
methods. Similar to the visualization results obtained on the BraTS2020
dataset, our method shows the ability to accurately segment organ
edges without the need for post-processing modules or shape-related
constraints. Fig. 5 highlights the accurate segmentation of challenging
areas by our method.

Overall, from both quantitative and qualitative results on three
datasets, our method presents superiority compared to other SOTA
methods for semi-supervised medical image segmentation with dif-
ferent ratios of annotated training data. Meanwhile, it demonstrates
9 
Fig. 5. Visual comparisons between the proposed method (last two columns) and strong
baselines (third to seventh column) on four representative images from 2017 ACDC
dataset. 5% training samples were annotated for model training. Second to eighth
column: different colors indicate different types of segmented regions. Last column:
pixel-wise uncertainty of the aggregation prediction using entropy.

that introducing meaningful feature-level perturbations to explore a
broader range of hidden space can lead to improved semi-supervised
segmentation performance on all datasets. Our method is not limited
to a specific backbone network or segmentation task. Experimental
results have demonstrated that our framework can be applied to various
medical tasks (e.g. lesion or organ segmentation) in either 2D or 3D
segmentation.



Y. Yang et al.

B
u
w

s
m

o
s

a
s
i
i

B
e

d

a
s

r

p
f
t
o
i
c

l
s
e
d
s
w
d
t
s
s

e

U

Medical Image Analysis 101 (2025) 103450 
Fig. 6. Performance on edge regions from our method and strong baselines on
raTS2020, LA 2017 ACDC datasets, with 5% (upper) and 10% (lower) labeled images
sed for training. ∗ means our method is significantly better than the compared method
ith 𝑝 < 0.05 via paired t-test.

4.6. Comparison on edge region

Some studies (Baumgartner et al., 2019; Kohl et al., 2018) have
indicated the discrepancies among experts in ground truth annotations,
especially around the edges regions. Therefore, accurate segmenta-
tion of edges depends heavily on the expert ground truth employed
for training and evaluation. The annotation bias between different
experts and the ambiguity present in edge regions pose significant
challenges to the accurate segmentation and evaluation of such areas.
While evaluating the segmentation performance, it is important to note
that the seemingly small difference in DSC between our method and
the strong baselines may be due to the fact that DSC is a metric
that considers the entire segmentation regions, and the current strong
baselines already demonstrate satisfactory performance in segment-
ing the main region of interest. However, accurate segmentation of
edge regions remains a challenge for these methods. To compare the
segmentation performance of different methods in edge areas rela-
tively fairly and objectively, a 10-pixel-wide band is defined for the
assessment. The pixel band is wide enough to encompass the slightly
inter-expert discrepancies in the edge region, particularly when the
boundaries are distinct. For both the BraTS2020, LA and 2017 ACDC
datasets, our method outperformed the best baseline (SFPC) by 8.31%,
11.69% and 7.27% in DSC with 5% labeled images used for training,
respectively (Fig. 6). This significant improvement is attributed to the
edge-aware contrastive loss function, which enables the model to learn
more discriminative representations in edge areas.

5. Discussion

In this section, we further discuss the impact of parameters and
trategies in the proposed framework on model segmentation perfor-
ance.

5.1. Hyper-parameter analysis

5.1.1. Effects of decoder numbers 𝑀
We investigate the sensitivity of 𝑀 . The 𝑀 controls the number

f decoders and corresponding predictions, which plays a vital role in
table training and uncertainty estimation. As demonstrated in Fig. 7,
𝑀 is set from 2 to 9 for our method, respectively. We can see that
the 𝑀 can also improve the segmentation performance. Note that the
feature-level perturbation module has been introduced from 𝐺2 to 𝐺𝑀
t this stage. We observed that increasing the number of decoders can
lightly improve the segmentation performance of the model when 𝑀
s small, and our method is not sensitive to the number of 𝑀 when it
s greater than 4 on the three datasets.
 t

10 
5.1.2. Effects of contrastive loss weight 𝜆2
While the coefficient 𝜆1 in the loss function is automatically ad-

justed during training iterations, the selection of the other coefficient
𝜆2 can indeed impact the performance of our method. To investigate
this, we conducted a hyperparameter sensitivity experiment on the

raTS2020, LA, and 2017 ACDC datasets, specifically focusing on the
ffects of 𝜆2 in balancing different losses (see Fig. 8). Here, a smaller
𝜆 would lead to decreased performance since insufficient contrastive
training would result in inaccurate edge regions of the outputs gener-
ated by the decoders. On the other hand, a larger value of 𝜆 has no
iscernible effect. Therefore, in this paper, the weight 𝜆 is set to 0.5 to

make optimal use of unlabeled data.

5.1.3. Effects of weak-to-strong perturbation
To achieve weak-to-strong perturbations, our method incorporates

 sensible perturbation module that applies perturbations to different
egmentation branches. The magnitude of the perturbation is adjusted

using the hyperparameter 𝜅. Specifically, we divide the perturbation
ange into equal parts based on the number of divided branches, with
𝑀 = 4 in this section. Each part corresponds to a branch, and the
erturbation is applied accordingly, gradually increasing in strength
rom one branch to the next. In Table 2 (lower half), we present
he DSC performance of our method trained with different degrees
f perturbation by varying 𝜅 on the BraTS2020 dataset. The results
ndicate that, in each semi-supervised setting, the DSC performance is
omparable across different 𝜅 values, suggesting that our method is

relatively robust to changes in the hyperparameter 𝜅. Here, a larger
𝜅 would cause excessive perturbation to the features of the middle
ayer, leading to the loss of structural information and inaccurate
egmentation results. On the other hand, a smaller 𝜅 may not introduce
nough perturbation, resulting in overly consistent outputs from the
ecoders, which hinders the model explore a wider range of hidden
pace and perform accurate segmentation of edge regions. Therefore,
e have adopted a perturbation coefficient of 𝜅 = 0.2, which generates
ifferent and meaningful outputs on all datasets. To further validate
he effectiveness of the perturbation strategy that gradually increases in
trength from weak to strong, we conducted a comparison by setting the
ame perturbation range for all perturbation branches, as illustrated in

Table 2 (upper half). In this comparison, we used a perturbation range
of 𝜅 = 0.2 for each perturbation branch on the BraTS2020 dataset.
The results demonstrate our proposed weak-to-strong strategy achieves
certain performance improvements.

5.1.4. Effects of pixel representation |𝑆𝑐 (𝐱𝑗 )|
Here, we investigate the effects of the positive pairs selection strat-

gy. In Table 3, the results using the uncertainty ranking selection
strategy are always higher than the random selection strategy, which
confirms the effectiveness of our proposed selection strategy. Besides,
the number of selected pixel representations |𝑆𝑐 (𝐱𝑗 )|, which is sorted by
uncertainty, to match its class mean representation is varied between
the values of 3, 6, and 10. In Table 3 (lower half), there is a marginal
improvement in performance when the number of selected pixels is
increased from 3 to 6. However, when the number of selected pixels
is further increased from 6 to 10, there is almost no noticeable pattern
in performance. This observation suggests that the performance of the
model remains stable as the number of positive pixel representations
sampled per class per image is varied. The final performance of the
model is not significantly affected by these changes.

5.2. Computing complexity

The backbone networks of most baseline methods employ three
prominent medical image segmentation frameworks, i.e., U-Net
(Ronneberger et al., 2015), V-Net (Milletari et al., 2016) and 3D-

Net (Çiçek et al., 2016). Compared with 3D-Unet, V-Net incorporates
he element-wise horizontal residual function, resulting in increased
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Fig. 7. Performance of our method on BraTS2020, LA and 2017 ACDC datasets with different decoder number of 𝑀 , where 5% labeled images were used for model training.
Dashed lines represent the performance of the strongest baselines.
Fig. 8. Performance of our method on the BraTS2020, LA and 2017 ACDC datasets with different contrastive loss weights 𝜆2, where 5%, 10% and 20% labeled images were used
for model training, respectively. Dashed lines represent the performance of the strongest baselines.
Table 2
Effects analysis of the weak-to-strong perturbation strategy on the BraTS2020 and 2017 ACDC datasets with 5%, 10% and 20%
labeled images for training. DSC is used as the evaluation metric to assess the performance.

Perturbation strategy 𝜅
BraTS2020 (3D) ACDC (2D)

5% labeled 10% labeled 20% labeled 5% labeled 10% labeled 20% labeled

Same range 0.1 80.86± 0.81 84.84± 0.77 86.77± 0.69 80.96± 0.95* 87.74± 0.88 88.96± 0.34
Same range 0.2 81.02± 0.89 85.16± 0.82 87.14± 0.76 81.14± 0.89 88.01± 0.70 89.37± 0.62
Same range 0.3 80.67± 0.92 85.07± 1.24 87.03± 1.16 81.02± 0.92 88.06± 0.83 89.25± 0.48
Same range 0.4 80.54± 1.13 85.01± 1.08 86.91± 1.21 80.99± 1.04* 87.83± 1.12 89.14± 0.51

Weak-to-strong 0.1 81.34± 0.74 85.61± 0.82 87.47± 0.51 82.08± 0.68 88.54± 0.72 89.94± 0.42
Weak-to-strong 0.2 81.82± 0.77 85.98± 0.75 87.79± 0.69 82.39± 0.82 88.92± 0.64 90.23± 0.39
Weak-to-strong 0.3 81.75± 1.13 85.92± 1.07 87.83± 0.74 82.25± 0.73 88.78± 0.51 90.18± 0.44
Weak-to-strong 0.4 81.49± 1.04 85.70± 1.16 87.58± 0.98 82.16± 0.92 88.61± 0.94 90.04± 0.37

* Means our method (Weak-to-strong, 𝜅 = 0.2) is significantly better than the compared method with 𝑝 < 0.05 via paired t-test.
Table 3
Effects analysis of the contrastive pixel selection strategy on the BraTS2020 and 2017 ACDC datasets with 5%, 10% and 20% labeled
images for training. DSC is used as the evaluation metric to assess the performance.

Selection strategy |𝑆𝑐 (𝐱𝑗 )|
BraTS2020 (3D) ACDC (2D)

5% labeled 10% labeled 20% labeled 5% labeled 10% labeled 20% labeled

Random sort 3 80.14± 0.92* 84.85± 0.76 87.01± 0.65 81.26± 0.83 87.35± 0.82 89.23± 0.47
Random sort 6 80.42± 0.79 84.92± 0.62 86.94± 0.73 81.46± 0.58 87.77± 0.67 89.37± 0.45
Random sort 10 80.48± 0.83 84.73± 0.57* 86.78± 0.68 81.32± 0.74 87.81± 0.79 89.19± 0.36

Uncertainty sort 3 81.63± 0.68 85.75± 0.95 87.85± 0.83 82.24± 0.65 88.72± 0.81 90.11± 0.42
Uncertainty sort 6 81.82± 0.77 85.98± 0.75 87.79± 0.69 82.39± 0.82 88.92± 0.64 90.23± 0.39
Uncertainty sort 10 81.68± 0.73 86.03± 0.86 87.96± 0.91 82.30± 0.91 88.86± 0.58 90.31± 0.32

* Means our method (Uncertainty sort, |𝑆𝑐 (𝐱𝑗 )| = 6) is significantly better than the compared method with 𝑝 < 0.05 via paired
t-test.
model parameters and higher computational complexity. To enable
the application of our method to both 2D and 3D images, we opt U-
Net (Ronneberger et al., 2015) and 3D-UNet (Çiçek et al., 2016) as
the backbone networks for our semi-supervised framework. Number
of Parameters (Para.), Multiply ACcumulate operations (MACs) and
training time are used to fairly compare the computational complexity.
As illustrated in Table 4, the complexity overhead of our method is
marginally greater than that of the single decoder methods based on the
V-Net backbone, such as UAMT (Yu et al., 2019) and DTC (Luo et al.,
2021a). However, when compared to the V-Net-based MC-Net+ (Wu
11 
et al., 2022) with multi-decoder and Tri-U-MT (Wang et al., 2021a)
with teacher-student network, our method (𝑀 = 4 by default) has lower
computational overhead while achieving superior segmentation perfor-
mance. All observations suggest that our method achieves performance
improvements with an appropriate increase in computational overhead.

5.3. Effects of different perturbation methods

The application of perturbations to the feature representation at
a specific hidden layer is a crucial aspect of consistency training. To
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Table 4
Quantitative comparisons with other state-of-the-art methods in computational complexity. 𝑀 denotes the number of decoders
in our method.
Method BraTS2020 (3D) 2017 ACDC (2D)

Para.(M) MACs(G) Time(H) Para.(M) MACs(G) Time(H)

UAMT (Yu et al., 2019) 9.44 47.02 2.9 1.81 2.99 1.2
SASSNet (Li et al., 2020b) 9.44 47.02 3.6 1.81 2.99 1.5
Tri-U-MT (Wang et al., 2021a) 36.52 52.15 3.2 5.13 8.17 1.3
DTC (Luo et al., 2021a) 9.44 47.05 1.8 1.81 3.02 0.9
CoraNet (Shi et al., 2021) 8.93 107.41 4.1 1.69 9.42 1.8
MC-Net+ (Wu et al., 2022) 15.25 126.35 4.4 2.58 5.32 1.8
URPC (Luo et al., 2022) 5.88 69.43 2.2 1.83 3.02 1.0
PLCT (Chaitanya et al., 2023) 8.13 101.37 3.8 1.72 7.75 1.6
DGCL (Wang et al., 2023c) 10.86 94.22 3.6 2.26 6.14 1.5
CAML (Gao et al., 2023) 20.13 112.89 4.2 3.62 13.16 1.7
DCNet (Chen et al., 2023a) 12.56 78.16 2.7 2.38 5.36 1.3
SFPC (Yang et al., 2023b) 8.24 87.27 3.1 1.81 4.76 1.4
Ours (𝑀 = 3) 9.21 90.65 3.2 2.02 3.68 1.3
Ours (𝑀 = 4) 11.25 106.47 3.6 2.23 4.19 1.4
Ours (𝑀 = 5) 13.29 121.64 3.9 2.46 4.71 1.2

nn-UNet 4.86 63.12 2.2 1.47 2.52 2.1
Table 5
Effects analysis of our proposed ensemble strategies on the BraTS2020 and 2017 ACDC datasets, where 5% and 10% labeled images were used for model training. WSP, ECL and
FPC+ denote the Weak-to-Strong Perturbation, Edge-aware Contrastive Loss and Feature-Perturbed Consistency with uncertainty-weighted aggregation, respectively.

% scans used Designs BraTS2020 (3D) 2017 ACDC (2D)

Labeled Unlabeled WSP ECL FPC+ DSC (%) ↑ Jaccard (%) ↑ 95HD (mm) ↓ ASD (mm) ↓ DSC (%) ↑ Jaccard (%) ↑ 95HD (mm) ↓ ASD (mm) ↓

5 95 46.82 36.96 24.16 8.27 49.37 41.52 18.04 8.26
✓ 62.44 52.04 16.72 6.81 61.53 52.91 15.47 7.42

✓ 57.51 46.19 17.74 6.43 59.47 50.62 14.36 5.69
✓ 75.43 65.35 14.86 4.95 72.47 63.06 6.85 2.82

✓ ✓ 65.41 55.82 15.94 6.26 68.72 59.09 7.02 2.53
✓ ✓ 80.94 69.77 13.07 3.72 80.64 68.78 5.96 2.09

✓ ✓ 77.69 66.37 14.79 4.63 76.95 66.17 7.41 3.69
✓ ✓ ✓ 81.82 70.36 12.19 3.47 82.39 71.16 5.67 2.01

10 90 49.02 38.87 20.587 7.29 54.52 46.34 15.63 7.24
✓ 64.89 54.78 17.13 6.77 68.39 58.81 7.04 2.67

✓ 59.28 47.59 17.14 6.04 63.27 53.14 7.27 2.35
✓ 77.12 65.92 14.42 5.36 75.41 64.73 6.95 2.52

✓ ✓ 71.45 60.30 15.96 5.68 73.04 62.57 6.68 2.61
✓ ✓ 85.29 75.14 10.77 3.01 87.65 78.69 5.04 1.41

✓ ✓ 82.37 70.72 15.89 3.49 84.16 72.37 7.74 2.65
✓ ✓ ✓ 85.98 75.63 9.97 2.64 88.92 79.65 4.32 1.19
n
a
i

(

Fig. 9. Segmentation performance with different perturbation strategies on the
BraTS2020 dataset, where 5%, 10% and 20% labeled images were used for model
training, respectively. ∗ means our method is significantly better than the compared
method with 𝑝 < 0.05 via paired t-test.

evaluate the impact of the feature perturbation strategy adopted in
ur method on the segmentation performance, we compared it with
our additional strategies: F-Noise (Ouali et al., 2020), F-Drop (Ouali

et al., 2020), Spatial Dropout (Tompson et al., 2015), and SFPC (Yang
t al., 2023b). Fig. 9 illustrates the segmentation performance achieved
sing these different feature perturbation strategies. The results clearly

demonstrate that the perturbation strategy adopted in our method
chieves the highest DSC value in three semi-supervised learning set-
ings. The results presented above evident that our proposed weak-to-

strong perturbation module enables a broader exploration of the latent
space while remaining within a reasonable range.
 o
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5.4. Effects of ensemble strategies

To investigate the effectiveness of our designed module, we conduct
detailed ablation studies in different model settings on BraTS2020 and
2017 ACDC with 5% and 10% labeled images for model training. The
umber of 𝑀 is set to 4 and the feature-perturbed consistency with
verage aggregation is applied by default in the framework. As shown
n Table 5, (1) the substantial performance improvements, with average

DSC gains of 16.41%, 14.53% (compare the last and the fourth to last
row in upper and lower halves respectively) on BraTS2020 dataset and
13.67%, 15.88% on 2017 ACDC dataset, are observed when employing
the feature-perturbed consistency approach with uncertainty-weighted
aggregation. This is because in the initial stage of model training, the
segmentation results generated by 𝐺2 to 𝐺𝑀 present high uncertainty
and are considered inaccurate. As a result, if the results of 𝐺1 to 𝐺𝑀
are simply averaged to obtain the aggregation label �̄�, the accuracy of �̄�
is seriously compromised. This hindrance prevents the improvement of
model performance. However, when uncertainty-weighted aggregation
stratagy is introduced, the segmentation results from 𝐺2 to 𝐺𝑀 with
high uncertainty have minimal impact on �̄� in the initial stage. In
other words, �̄� is primarily determined by the results of 𝐺1. As the seg-
mentation capabilities of 𝐺2 to 𝐺𝑀 improve during the model update
process, the uncertainty of their outputs gradually decreases. Conse-
quently, the weights assigned to their outputs in �̄� steadily increase;
2) introducing weak-to-strong perturbation, denoted by WSP, results in

bvious average DSC improvement of 4.13%, 3.61% (compare the last
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two rows in upper and lower halves respectively) on BraTS2020 dataset
and 5.44%, 4.76% on 2017 ACDC dataset. These results demonstrate
that our proposed weak-to-strong perturbation module allows for more
extensive exploration within a reasonable range of the latent space,
leading to better performance; (3) encouraging the framework focus
n edge regions using edge-aware contrastive loss, denoted by ECL,
esults in average DSC improvements of 0.88%, 0.69% (compare the
ast and the third to last row) on BraTS2020 dataset and 1.75%, 1.27%
n 2017 ACDC dataset. It is worth noting that the ECL module is
esigned specifically for accurate segmentation of edge regions. Its
ain function is to improve the segmentation performance of edge

egions while WSP and FPC+ for the whole region. Given that the edge
egion constitutes only a minor portion of the total segmentation area,
he improvement in performance achieved by ECL is comparatively less
ignificant than that of the other two modules when considering the
verall DSC metric. All the observations suggest that the contrastive
earning branch we developed effectively improves the model’s ability
o learn more discriminative features in the edge region.

6. Conclusion

Deploying high-performance deep learning models for medical im-
ge segmentation, especially in edge regions, presents a formidable
hallenge due to the requirement for a large number of annotations. In

this study, we propose a semi-supervised approach that addresses this
issue by utilizing a substantial amount of unlabeled images alongside
a limited set of annotations. Initially, we introduce a weak-to-strong
perturbation module that effectively exploits the semantic information
from the unlabeled data. To ensure learning from reliable regions
of multiple predictions, we further develop a feature-perturbed con-
sistency loss with an uncertainty-weighted aggregation strategy that
automatically filters out unreliable regions. Additionally, we define
an edge-aware contrastive loss to guide our framework to learn more
discriminative representations in edge regions. By incorporating this
contrastive loss, our framework achieves superior accuracy in iden-
tifying edge regions compared to other baseline methods on three
datasets. We extensively evaluate our approach on three open-source
datasets in both 2D and 3D, achieving the highest segmentation per-
formance across various limited annotation scenarios. Furthermore, we
demonstrate the robustness of our method to hyperparameter settings
rom different perspectives. However, our framework has the limitation
hat the number of parameters of the model increases dramatically as
he number of decoders gradually increases. In the future, we aim to
ptimize the negative sample selection strategy and apply our proposed
ethod to a broader range of medical image segmentation tasks.
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