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PCCT: Progressive Class-Center Triplet Loss for
Imbalanced Medical Image Classification

Kanghao Chen , Weixian Lei, Shen Zhao , Wei-Shi Zheng , and Ruixuan Wang

Abstract—Imbalanced training data in medical image di-
agnosis is a significant challenge for diagnosing rare dis-
eases. For this purpose, we propose a novel two-stage
Progressive Class-Center Triplet (PCCT) framework to over-
come the class imbalance issue. In the first stage, PCCT
designs a class-balanced triplet loss to coarsely sepa-
rate distributions of different classes. Triplets are sampled
equally for each class at each training iteration, which al-
leviates the imbalanced data issue and lays solid founda-
tion for the successive stage. In the second stage, PCCT
further designs a class-center involved triplet strategy to
enable a more compact distribution for each class. The
positive and negative samples in each triplet are replaced
by their corresponding class centers, which prompts com-
pact class representations and benefits training stability.
The idea of class-center involved loss can be extended to
the pair-wise ranking loss and the quadruplet loss, which
demonstrates the generalization of the proposed frame-
work. Extensive experiments support that the PCCT frame-
work works effectively for medical image classification with
imbalanced training images. On four challenging class-
imbalanced datasets (two skin datasets Skin7 and Skin
198, one chest X-ray dataset ChestXray-COVID, and one
eye dataset Kaggle EyePACs), the proposed approach re-
spectively obtains the mean F1 score 86.20, 65.20, 91.32,
and 87.18 over all classes and 81.40, 63.87, 82.62, and 79.09
for rare classes, achieving state-of-the-art performance and
outperforming the widely used methods for the class imbal-
ance issue.

Index Terms—Data imbalance, medical image
classification, triplet loss.
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I. INTRODUCTION

C LASS imbalance issue is ubiquitous in medical diagno-
sis [1] because large-scale clinical datasets often exhibit

imbalanced class distributions. For example, in clinical diagno-
sis, the data is by nature heavily imbalanced [2] because common
diseases occur more frequently than rare disease. This raises
a major challenge for modern deep learning models because
most of them assume balanced class distributions in the training
dataset. When presented with an imbalanced dataset, the training
procedure is dominated by frequent classes, and the trained
model tends to perform better on these frequent classes but
significantly worse on infrequent classes [3].

Many approaches attempt to solve the class imbalance issue.
For example, the re-sampling [4] strategy can be applied to
over-sample the limited data from infrequent classes or under-
sample the data from frequent classes to balance training data
across classes. The re-weighting [5] strategy sets larger weights
to the loss terms related to infrequent classes, which makes
balanced loss terms across classes. Still relevant to modification
of training loss, the traditional margin-based loss may be refined
by setting smaller margin for frequent classes and larger margin
for infrequent classes to alleviate the class-imbalance issue [6].
Another approach [7] adaptively sets a higher weight for the
sample that is difficult to recognize. Besides the re- balancing
strategies mentioned above, other strategies have also been pro-
posed by improving the representation ability of the deep neural
network. These can be achieved by class-imbalanced represen-
tation learning, such as transfer learning [8], semi-supervised
and self-supervised learning [9]. The above-mentioned strate-
gies can be combined with each other, for example, by first
performing representation learning of the feature extractor and
then applying re-balancing strategy to the model output side [10]
or the input side [11], the classification performance of the rare
classes can be improved.

However, although these strategies alleviate the class
imbalance issue to some extent, their adverse effects should
also be considered. For example, re-sampling has the risks
of over-fitting the small-sample classes and under-fitting the
larger-sample classes, and re-weighting may distort the original
distributions by directly changing or over-inverting the data
frequency of infrequent classes. This could unexpectedly
damage the overall representation ability of the learned
features. Also, the combination of representation learning [8]
and re-balancing strategies [10] might also suffer from higher
sensitivity to hyper-parameters or higher complexity in the
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training procedure [12]. The other strategy, transfer learning,
may require designing complicated modules that require large
memory consumption during feature transfer [11].

Different from the above model training approaches, triplet
loss [13], [14], [15] is a popular scheme that has the potential
to solve the imbalanced issue by extracting discriminative fea-
ture representations without tedious hyper-parameter tuning and
module training [16], [17]. Triplet loss flexibly acquires anchor,
positive, and negative samples where the anchor and positive
are from the same class while the negative is from a different
class. It then forces the features to be similar (or dissimilar) for
samples from the same (or different) class and thus helps the
CNN extractors to extract more discriminative features. Triplet
loss and its variants can be applied to various applications such as
face recognition [13], person re-identification [15] and 3D shape
retrieval [16]. For medical applications, methods based on triplet
loss have been validated in wireless capsule endoscopy polyp
detection [18] and brain tumor classification [19]. However,
the potential of triplet losses in solving the class imbalance
issue has not been fully exploited. Simply applying the triplet
loss to class-imbalanced image classification may encounter the
following issues. First, if the anchors, positives, and negatives in
the triplets are not elaborately chosen, the triplets whose anchors
come from frequent classes will be much more than triplets
whose anchors come from the infrequent class.

In this case, triplets are not equally sampled and the frequent
classes still dominate the model training, which results in worse
classification performance on infrequent classes. Second, when
constructing the triplets, anchor and positive samples may be
mapped far away in the embedding space particularly for the
frequent classes. This may be due to the fact that intra-class
visual variations are large in frequent classes, and it may cause
instability during triplet-based model training and harm the
classification performance. In this study, by extending the triplet
loss, we propose a novel two-stage Progressive Class-Center
Triplet (PCCT) framework as a stable triplet-based model train-
ing strategy to solve the class imbalanced issue for diagnos-
ing rare diseases. The two stages of our PCCT are designed
particularly to handle the above-mentioned two potential issues
when applying triplet loss to the class-imbalanced classification
task. In the first stage, a class-balanced triplet sampling strategy
is designed to sample triplet equally for each class, i.e., in
each class-balanced triplet batch, the numbers of triplets whose
anchors are from different classes are the same. In this way,
the number of training data (i.e., triplets) relevant to infrequent
classes can be largely increased compared to the number of
individual images in these classes, i.e., the triplet data can be
balanced between classes. In the second stage, a class-center
involved triplet is designed to deal with the problem that anchor
and positive samples may be mapped far away. Here the positive
and negative samples in each original triplet are replaced by
their corresponding class centers. This avoids the cases where
the anchor and positive samples are far away and can help
establish compact distribution for each class, which keeps the
training more stable particularly for datasets with larger intra-
class variance. Based on the class-center triplet loss, we further
introduce trainable class centers, where class centers are part

of trainable model weights and therefore avoids the frequent
computation of class centers with all training samples during
model training. Different from popular two-stage techniques
which mainly focus on the classifier head (e.g., LDAM [6] and
Decouple [10]), the proposed two-stage progressive framework
boosts the representation of feature extractor in a coarse-to-fine
triplet-based model training manner and effectively alleviate the
class imbalance issue. The main contributions of this study are
summarized as follows.

� We propose a novel two-stage Progressive Class-Center
Triplet (PCCT) framework to capture discriminative and
class-compact representation, which is the first triplet
framework for solving the class imbalance issue. This
framework is also proved to be extensible to other met-
ric learning schemes such as pair-wise ranking loss and
quadruplet loss.

� For the first time, we propose a set of new strategies
associated with triplet-based training, including the class-
balanced triplet sampler, the class-center involved triplet
loss, and the trainable class centers. These strategies
help capture discriminative, class-compact, and effective
feature representation, and are beneficial for stabilizing
triplet-based training and improving classification perfor-
mance on class-imbalanced datasets.

� The strategies for triplet-based model training are exten-
sively evaluated on multiple imbalanced medical image
datasets of different body parts, diseases, and imbalance
ratios, which demonstrates the effectiveness of the PCCT
framework particularly for rare disease diagnosis.

Note that this work is an extension of the previous conference
publication [20] in the following aspects.

1) We delve into the two-stage training process of our PCCT
framework. More detailed analyses of the relationship
between the two stages and extensive experiments are
performed, clearly demonstrating the effectiveness of the
novel training process in the imbalanced medical diagno-
sis.

2) We propose another strategy for class-center involved
triplet loss, which directly trains class centers together
with the feature extractor. This requires much less com-
putation cost during training but equivalent classification
performance, which is referred to as Efficient-PCCT.

3) We have validated that the class-center involved loss can
be extended to pair-wise ranking loss and the quadruplet
loss. Corresponding experimental evaluations show that
the class-center involved metric learning outperforms the
original learning strategies.

4) More extensive evaluations have been included, not only
on the two skin image datasets but also on the new chest
X-ray dataset and the Kaggle EyePACs dataset.

II. METHODS

As demonstrated in Fig. 1(a), our Progressive Class-Center
Triplet (PCCT) is designed as a two-stage triplet-based model
training framework to effectively alleviate the imbalanced issue
in medical diagnosis and accurately diagnose both common
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Fig. 1. Our proposed PCCT framework uses a two-stage training procedure to extract discriminative features for imbalanced medical classification.
As Fig. 1(a) demonstrates, our PCCT first trains the model by the class-balanced triplet sampler to capture a coarse class center for each class,
and then fine-tune the model using the class-center involved triple loss to capture more compact class distributions. Fig. 1(b) demonstrates how the
class-balanced triplet sampler constructs triplets, with each triplet composed of an anchor, a positive, and a negative sample. Fig. 1(c) demonstrates
the effect of class-center involved triple loss, i.e., achieving compact distribution for each class.

and rare diseases. In the first stage, we design a class-balanced
triplet sampler to obtain a batch of triplets whose anchors from
different classes are balanced. This strategy samples triplets
equally for each class and helps to alleviate the imbalanced issue
during training the feature extractor. Furthermore, this training
stage helps the feature extractor to capture a coarse class center
for each class. In the second stage, we design a class-center
involved triplet constructor to obtain triplets whose positives
and negatives are the class centers. This strategy enforces the
feature representation of each data to be closer to the corre-
sponding class center and therefore helps the distribution of each
class to be more compact in feature space, which stabilizes the
triplet-based model training procedure. To further explore the
two-stage framework, we also show that the class centers can
either be directly calculated with training samples of the class
during model training or learned as part of model parameters.
Moreover, the two-stage framework is proved to be extensible
to other metric learning losses (e.g., pair-wise and quadruplet
losses), which demonstrates the generality of the proposed
method.

A. Triplet Loss With Class-Balanced Triplet Sampler

In the first stage, we propose the class-balanced triplet sampler
to obtain batches of triplets whose anchors from different classes
are balanced, which alleviates the imbalanced issue and trains a
discriminative feature extractor to capture coarse class centers.
In order to better describe our method, we first briefly retrospect
the classical triplet loss. Each triplet is composed of an anchor,
a positive and a negative, where the anchor and the positive are
sampled from the same class, and the negative is sampled from
other classes. Then the triplet loss is adopted to help satisfy the
condition that the distance between the anchor and the positive
is closer than the distance between the anchor and negative by
a margin α in the feature space, i.e.,

‖f(ai;θ)− f(pi;θ)‖+ α < ‖f(ai;θ)− f(ni;θ)‖ , (1)

where ai, pi and ni respectively denote an anchor, positive and
negative. f(·;θ) means the CNN-based feature extractor (e.g.,
ResNet-50) to be learned, θ denotes the trainable parameters in
the CNN. ‖ · ‖ can be any Lp norm (p = 2 by default), and α is
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the margin in the inequality constraint (1), which is set to 0.5 by
default. In this way, the triplet loss for the CNN model can be
defined as

lt(ai,pi,ni;θ) = [‖f(ai;θ)− f(pi;θ)‖+ α

− ‖f(ai;θ)− f(ni;θ)‖]+ , (2)

with [d]+ = max(0, d) denoting the hinge loss. The total loss
of a batch can be simply calculated by summation over the
samples, i.e., L(θ) = 1

N

∑N
i=1 lt(ai,pi,ni;θ) . L(θ) can be

combined with the cross-entropy loss to optimize the CNN
model simultaneously. Although the triplet loss can help train a
discriminative feature extractor, as mentioned in the Introduction
section, traditional triplet losses often ignore class distributions
when forming the triplets, i.e., triplets are not sampled equally
and the frequent class still dominates the model training in class
imbalanced datasets.

In our work, a class-balanced triplet sampler is designed
to alleviate the imbalanced issue by constructing batches of
triplets whose anchors from different classes are balanced. It
first collects equivalent number of samples from all classes to
form a training batch. For example, as shown in Fig. 1(b1)(b2),
if the batch size N is 9 and the class number C is 3, then Ni=3
samples are selected from each class. Then, for each class in
the batch, all Ni samples of this class are used as anchors to
construct anchor-positive pairs, i.e., all possible combinations of
the anchor-positive pairs within the batch are considered. Next,
for each anchor-positive pair, all possible random-hard [13]
negative samples (i.e., all samples from the other classes that
make the loss ( (2)) larger than 0) are chosen to form as many
triplets as possible, as shown by the circles of different colors
(classes) in Fig. 1(b3). This combination of anchor-positive pairs
and negatives takes full advantages of all samples to form triplets
while keeping the balance of the triplets among classes, i.e.,
triplets whose anchors are of different classes are approximately
the same. This alleviates the class imbalance issue in triplet
construction. For example, although there are more green sam-
ples than the red samples in Fig. 1(b1) (i.e., class imbalance),
triplets whose anchors are of different colors (classes) are kept
approximately the same in Fig. 1(b3) through the class-balanced
triplet sampling strategy. In this way, our class-balanced sampler
generates class-balanced batches during model training, i.e., the
number of anchors from different classes remains equivalent in
each batch in the training process, therefore helping to alleviate
the class imbalance issue.

Another advantage of the first training stage is that it can
capture a coarse class center for each class. By training the
feature extractorθwith the class-balanced triplets, the distances
between the samples from the same class are smaller than those
between the samples from different classes, i.e., the embedding
features of the samples within one class will be closer. In this
way, the averaged sample features, i.e., the coarse class centers,
of each class would be more representative of this class. These
coarse class centers can help the feature extractor in the next
stage to capture a more compact feature distribution for each
class, which helps to stabilize the training process. Without the
first-stage training process, randomly initialized parameters of

the feature extractor would probably cause the distributions to
spread more or less randomly and heavily overlap across classes
in the feature space especially at the early training stage. Such
frequently and largely changed class distribution over training
epochs would cause the training instability in the second stage
when class centers are involved. Therefore, the first stage sets
the foundation for the second stage to converge more stably.

B. Class-Center Involved Triplet Constructor

After training the CNN feature extractor model in the first
stage, a class-center involved triplet loss is designed to further
improve the class-imbalanced classification performance in the
second stage. In this stage, the class-center involved triplet loss is
designed to enforce the feature representation of each data to be
closer to the corresponding class center in the feature space,
therefore prompting the overall class-level distribution to be
more compact in the feature space. This design is motivated by
the fact that for a frequent (larger-sample) class in a large-scale
medical dataset, images could have large variations in visual
appearance even if they are from the same class. This would
lead to a spreading distribution in a relatively large region
in the feature space for the frequent classes, i.e., the anchor
and positive samples can be far away from each other in the
feature space. This can cause instability during training and
harm the classification performance in traditional triplets. The
class-center involved triplet is designed to deal with the problem
and improve training stability.

To improve the optimization process, we propose modifying
the original triplet loss with class centers to consider the global
information on distributions of all classes. As demonstrated in
Fig. 1(c), the modified triple loss is designed as

lc(ai,pi,ni;θt) = [‖f(ai;θt)− c(ai;θt−1)‖+ α

− ‖f(ai;θt)− c(ni;θt−1)‖]+ . (3)

Similar to Eq. 2, f(.;θ) denotes a CNN feature extractor with pa-
rametersθ. However, the extracted feature f(pi;θ) and f(ni;θ)
of the positive and negative samples in Eq. 2 are respectively the
corresponding class centers c(ai;θt−1) and c(ni;θt−1). The
class-center involved triplets are constructed as follows. First,
at the beginning of each training epoch, all training samples are
fed into the feature extractor (with parameters θ) to obtain their
feature representations. Then, the feature representations of all
training samples from the same class are averaged to obtain
the class center for each class. Next, at each training iteration,
each sample in the batch is regarded as the anchor, and the
class center of the same class is regarded as the positive for
the anchor. Subsequently, the distance of the anchor to all class
centers are calculated, and those centers satisfying the condition
lc(ai,pi,ni;θt) > 0 (from Eq. 3) are selected as negatives, i.e.,
class centers of the other different classes which are nearer to the
anchor than the positive by a distance margin α are regarded as
negatives and used for constructing triplets. The triplets are used
to calculate the class-center involved triplet loss for training the
feature extractor. Lastly, the class centers are updated after each
epoch.
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The designed class-center involved triplet construction not
only benefits triplet-based model training, but also makes full
use of the training samples. From the aspect of triplet-based
model training, since the class centers, i.e., the averaged features
all samples of this class, are used to construct triplets, the outlier
samples of the frequent classes can be automatically avoided
in triplet construction. The triplets constructed in this manner
tend to satisfy Eq. 3, which are beneficial for triplet-based
model training. Also, by using class centers as positives and
negatives, the circumstance that anchor and positive samples
are mapped far away is avoided, which stabilizes the training
when sample features show large variety in the frequent class.
Also particularly after certain epochs of training, the locations
of the class centers in the feature space would not show drastic
changes, which helps to stabilize the training. From the aspect
of sample exploitation, for a batch of samples, all of them are
exhaustively used as the anchors. For each anchor sample, all
negative class centers that contributes to non-zero losses (i.e.,
the values of Eq. 3 are larger than 0) are selected to form
triplets with the anchor. Thus, triplets beneficial for training are
constructed for each sample, i.e., all samples are sufficiently
leveraged to construct triplets. In comparison, the triplet center
loss for object retrieval in [16] uses only the nearest negative
center for each anchor. In conclusion, our PCCT fully considers
the global distribution of different classes and provides effective
and stable training of the CNN feature extractor. During the
testing procedure, since the CNN feature extractor has been well
trained, the class centers are representative of all classes.

Thus, we can simply adopt the nearest class center method to
make a prediction for any new test sample, i.e., we can classify
the test sample to the class whose center is closest to the test
sample in the feature space.

C. Extensions of Class-Center Based Triplet Loss

Our two-stage PCCT can be extended to the pair-wise loss [21]
and the quadruplet loss [22]. Pair-wise loss is one of basic meth-
ods in metric learning, and quadruplet loss has been shown to
cause larger inter-class variation and smaller intra-class variation
in the feature space compared to the triplet loss, which can
obtain a better generalization ability in person ReID [23]. In
order to better describe the extended methods, we first formalize
the commonly used pair-wise loss and quadruplet loss. The
pair-wise ranking loss enforces the paired samples from the
same class to be close to each other and the paired samples from
different classes to be further apart. The pair-wise ranking loss
lp is defined with paired samples of same or different classes,

lp(ai,bi;θ)

= 1(ai,bi)‖f(ai;θ)− f(bi;θ)‖
+ (1− 1(ai,bi))[α− ‖f(ai;θ)− f(bi;θ)‖]+ , (4)

where the indicator function 1(ai,bi) is 1 if ai and bi belong
to the same class, and 0 otherwise.

Compared to triplet loss, the quadruplet loss additionally
enforces that the distance between two samples of the same
class is smaller than that between two samples from another

two classes. The quadruplet loss is defined based on quadruple
samples which include one anchor and one positive from the
same class, and two negative samples (ni,1 and ni,2) coming
from two other different classes,

lq(ai,pi,ni,1,ni,2;θ) = [‖f(ai;θ)− f(pi;θ)‖+ α

− ‖f(ai;θ)− f(ni,1;θ)‖]+
+ [‖f(ai;θ)− f(pi;θ)‖+ β

− ‖f(ni,1;θ)− f(ni,2;θ)‖]+ ,
(5)

where β is another constant that is normally smaller than α.
For extension, the class-center based pair-wise ranking loss

and quadruplet loss can be obtained by simply using class centers
as corresponding positive and negative samples, i.e.,

lpc(ai,bi;θt)

= 1(ai,bi)‖f(ai;θt)− c(bi;θt−1)‖
+ (1− 1(ai,bi))[α− ‖f(ai;θt)− c(bi;θt−1)‖]+ , (6)

lqc(ai,pi,ni,1,ni,2;θt)

= [‖f(ai;θt)− c(pi;θt−1)‖+ α

− ‖f(ai;θt)− c(ni,1;θt−1)‖]+
+ [‖f(ai;θt)− c(pi;θt−1)‖+ β

− ‖c(ni,1;θt−1)− c(ni,2;θt−1)‖]+ . (7)

Once the feature extractor is well trained by the pair-wise ranking
loss or the quadruplet loss, it can be used for classification of any
test sample using the nearest class-center method as mentioned
above, which is accessible in the testing stage.

D. Trainable Class Centers

Besides the extension to other losses, we also carry out another
exploration around the topic of the two-stage triplet-based model
training pipeline. In this exploration, we consider the class
centers in the second stage of the proposed PCCT framework
as trainable model parameters to reduce the computational cost
and speed up the training with the two-stage PCCT. In other
words, the class center (i.e., c(·;θt−1)) in Eq. 3 become trainable
class centers. The idea of trainable centers is motivated by the
observation that the calculation of the class centers would take
up a lot of computation, probably because this procedure needs
to fetch all training samples and average features for each class.

Formally, we define the class centersC = {c1, c2, . . ., cK} as
part of model parameters, where K represents the total number
of classes. The trainable centers are also implemented with the
designed two-stage framework. For the first stage, the same
class-balanced triplet sampler is used to train the embedding
network (with network parameters θ) to extract compact feature
distribution for each class. Then, for the second stage, the
embedding network is initialized with that trained in the first
stage. What is different, the trainable center strategy initializes
the centers for all classes as trainable vectors, which are parts of
the model parameters that can be optimized with the parameters
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TABLE I
THE STATISTICS OF THREE MEDICAL IMAGE DATASETS

in the network in an end-to-end manner. Then, following the
two-stage training workflow, each sample in a training batch
is regarded as the anchor, the class center with the same label
is regarded as the positive, and all centers with different labels
satisfying Eq. 3 are regarded as the negatives. In this way, the gra-
dient back-propagation procedure with the loss function updates
the trainable class centers C together with the feature extractor
parametersθ. This procedure avoids passing all samples through
the feature extractor to calculate the averaged class centers
after each training epoch, which avoids the time-consuming
procedure during training. Since the trainable centers contain rel-
atively fewer (class_number × feature_vector_length) pa-
rameters, the additional computational cost caused by the train-
able class centers during training is negligible compared with the
computed class centers. We propose to introduce this strategy
into the original PCCT and called the new version Efficient-
PCCT.

A recently study introduces trainable class centers [24] to
maximize a Gaussian affinity objective with hyper-parameters
to be tuned and approximately equal distance between class
centers to be enforced. Differently, our trainable class centers
can be simply obtained by minimizing the proposed class-center
involved triplet loss without extra constraints.

III. EXPERIMENTS AND DISCUSSIONS

A. Experiment Settings

We choose four challenging datasets (Table I) for imbalanced
medical diagnosis to evaluate the proposed PCCT method. All
four datasets include frequent and infrequent classes, with vary-
ing levels of class imbalance. The dermoscopy dataset Skin7
contains 7 categories with an imbalance ratio of 58.3 (i.e.,
6705/115). Another skin image dataset Skin198 contains 198
categories with an imbalance ratio of 6.0. The X-ray dataset
ChestXray-COVID contains 3 categories with an imbalance
ratio of 66.5, including 8,851 “Normal” images, 1,000 “Pneumo-
nia” images and 133 “COVID” images. The Kaggle EyePACs
consists of 35,126 images with labels. Following the relevant
study [25], we recast the 5-class classification task as binary
classification. The recasted EyePACs contains 2 categories with
an imbalance ratio of 4.14, with the frequent class (healthy)
containing 22629 images and the infrequent class containing
5471 images in the training set. During training, all Skin7,
Skin198 and EyePACs images are resized to 300× 300 pix-
els and then randomly cropped to 224× 224 pixels, while
ChestXray-COVID images are resized to 512 followed by a
random horizontal flip. The batch size setting (Table II) is chosen
for better convergence. For our PCCT, the last output layer of

TABLE II
THE BATCH SIZE DURING TRAINING FOR EACH DATASET

the original CNN is replaced by a new fully-connected layer
whose output is a 128-dimensional feature vector. We use Adam
optimizer to train the CNN feature extractor. The learning rate,
β1, and β2 are respectively set as 0.0001, 0.9, and 0.99. α is set
to 0.5. Both two stages in PCCT are trained for 200 epochs to
ensure the convergence of the CNN model.

For evaluation, the proposed PCCT is compared with mul-
tiple relevant baselines with the same backbone (ResNet-50)
feature extractor. Our PCCT has been extensively evaluated
using three evaluation metrics, i.e., average precision (‘MCP’),
average recall (‘MCR’), and average F1 score (‘MF1’) over
classes. MF1 takes both MCP and MCR into account, which is
considered as a more comprehensive measurement to evaluate
the model. Standard 5-fold cross-validation is performed to
obtain comprehensive performance comparison. The means and
standard deviations (in bracket) of the three measurements over
five folds are reported in each evaluation. All the measurements
are reported in the form of percentage (i.e., %), which is omitted
for brevity.

B. Effectiveness of the Triplet-Based Approach

The effectiveness of the proposed PCCT is evaluated by
comparing with several popular class imbalance training strate-
gies, including the class re-weighting strategy (‘WCE’) [5], the
oversampling strategy (‘OCE’), the focal loss (‘WFCE’) [7].
All above methods are based on the cross-entorpy loss, so the
abbreviations are annotated with ‘BCE’. We also compare our
method with the state-of-the-art two-stage decoupling method
(‘TSD’) [10]. The basic cross-entropy loss (‘BCE’) [30] without
any class re-balancing strategy is also included for comparison.
In training, the batch size is set to 32 for all baselines and
the same training and evaluation protocols are used as for the
proposed approach.

Table III and Table IV show that our PCCT outperforms
the compared methods on all the datasets on both overall per-
formance and infrequent class classification performances. As
shown in the last two rows of Table III, our PCCT, as well as
Efficient PCCT, show consistent superior performance with all
three metrics. For example, on the Skin7 dataset, PCCT achieves
the mean F1 score of 86.2%, which is better than all the other
methods. Also, the mean F1 performance over all classes shows
improvements on the Skin198, ChestXray-COVID, and Kaggle
EyePACs datasets. Wilcoxon Rank test demonstrates our PCCT
significantly outperforms the compared methods (p-values <
0.05). Also, the performance of our PCCT is comparable to the
state-of-the-art approach TSD (there is no significant difference
between PCCT and TSD). For the performance of PCCT on
infrequent classes, we compare the performance of all methods
on the most infrequent class in the four datasets. For Skin7,
ChestXray-COVID, and Kaggle EyePACs, the most infrequent
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TABLE III
THE OVERALL PERFORMANCE OF PCCT IS AMONG THE BEST COMPARED WITH THE STATE-OF-THE-ART METHODS IN SKIN7, SKIN198, CHESTXRAY-COVID,

AND KAGGLE EYEPACS

TABLE IV
THE PERFORMANCE OF PCCT ON INFREQUENT CLASSES IS AMONG THE BEST COMPARED WITH THE STATE-OF-THE-ART METHODS IN SKIN7, SKIN198,

CHESTXRAY-COVID, AND KAGGLE EYEPACS

class respectively have 115, 133 and 5471 images. For Skin198,
we choose 70 most infrequent classes for this evaluation because
there are less than 20 images in all these 70 classes. Table IV
shows that our PCCT benefits the classification performance
on infrequent classes in all three datasets, e.g., the mean F1
score is improved by 7.35% on the infrequent class of Skin7
compared with the baseline OCE. Similar improvements of
the mean F1 score on infrequent classes are also observed on
Skin198, ChestXray-COVID, and Kaggle EyePACs. Compared
with the baseline OCE, our proposed PCCT achieves 7.46%,
9.9%, and 2.3% improvement on infrequent classes of Skin198,
ChestXray-COVID, and Kaggle EyePACs respectively. Also,
PCCT generally outperforms the newly-compared triplet-ratio
loss by means of both overall performance and infrequent class
classification performance. This can be probably contributed
to the fact that PCCT is designed as a two-stage progressive
framework which (a) designs a class-balanced triplet sampling
strategy to deal with the problem that triplets whose anchors

come from the infrequent class are rare; and (b) designs a
class-center involved triplet strategy to deal with the problem
that anchor and positive samples may be mapped far away.
These strategies boost the representation of feature extractor
in the coarse-to-fine triplet-based model training manner, which
effectively alleviate the class imbalance issue.

C. Generalizability and Hyper-Parameter Evaluation

Our PCCT is experimentally proved to be robust to model ar-
chitectures, as well as hyper-parameter variation such as output
dimension and the margin α. Table V shows that when the CNN
feature extractor varies in ResNet-50 [30], DenseNet-121 [33],
Inception-v4 [34], VGG-19 [35], the proposed PCCT shows
consistent performance improvement on the dataset Skin198.
Tests with varying output dimensions (Fig. 2) also show that the
proposed PCCT is still consistently better than corresponding
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TABLE V
CLASSIFICATION PERFORMANCES OF PCCT ARE STABLY BETTER THEN THE COMPARED METHODS WHEN USING DIFFERENT MODEL ARCHITECTURES.

COMPARISONS ARE PERFORMED ON SKIN198 DATASET

TABLE VI
EXTENSION OF THE CLASS-CENTER BASED TRIPLET LOSS TO THE CLASS-CENTER BASED PAIR-WISE RANKING LOSS AND QUADRUPLET LOSS

Fig. 2. Effect of output dimension on imbalanced classification. Skin7
is used here.

baseline methods with the same model architecture. Further-
more, when the marginαvaries, the performance of the proposed
PCCT is relatively stable on all three datasets (Fig. 3), e.g.,
when α alters from 0.1 to 0.9, the mean F1 score remains
stable; its fluctuation is less than 1% on Skin7. These results
are consistently supporting that the proposed two-stage PCCT
method is stable and generalizable.

The role of class centers in the triplet loss is further demon-
strated to be extensible to relevant metric learning, e.g., based on
the pair-wise ranking loss and the quadruplet loss. As introduced
in Section II-C, class centers can be easily used to replace the
samples in the ranking loss and the quadruplet loss, resulting in

the class-center based ranking loss and quadruplet loss respec-
tively. As shown in Table VI, compared to the original pair-wise
ranking loss and the quadruplet loss, class-center involved losses
can help train better feature extractors on all three datasets. This
suggests that class centers may be potentially applied in various
metric learning strategies where multiple samples as training
units are involved.

D. Ablation Study

Ablation studies were performed to evaluate the significance
of the two stages, the sampling strategy, the triplet loss, and the
trainable class centers. Experimental results demonstrates the
significance of these designs.

The comparison in Table VII demonstrates the importance of
the two-stage training strategy on three typical datasets (Skin7,
Skin198, and ChestXray-COVID). For the effect of the first
stage, performance gains on the three datasets (second VS
sixth row in Table VII) consistently support that the pre-train
procedure by the class-balanced triplet loss is crucial for the
second-stage training by the class-center triplet loss. Compared
with the only second-stage training (i.e., training the CNN fea-
ture extractor from scratch using only the class-center involved
triplet loss), PCCT achieves higher performance with almost all
three metrics (MF1, MCP, and MCR) on the three datasets with
the help of the class-balanced triplet sampler. On the Skin 198
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Fig. 3. Robustness of the proposed PCCT with respect to the margin α on all three datasets (from left: Skin7, Skin198, ChestXray-COVID).

TABLE VII
EFFECT OF THE TWO-STAGE TRAINING, THE SAMPLING STRATEGY, THE TRIPLET LOSS, AND THE LEARNABLE CLASS CENTERS IN PCCT

TABLE VIII
TRAINABLE CENTERS REQUIRE LESS COMPUTATIONAL TIME THAN
COMPUTED CENTERS ON THREE DATASETS (SKIN7, SKIN198, AND

CHESTXRAY-COVID)

and ChestXray-COVID datasets, the performance improvement
is more obvious. For example, on the Skin198 dataset, PCCT
achieves a mean F1 score (MF1) of 65.20%, clearly higher
than only using the second stage (which results in a MF1
of 58.89%). This demonstrates the class balancing strategy in
triplet construction helps alleviate the imbalance issue. For the
effect of the second stage, similar performance improvement
has been observed (first v.s sixth row in Table VII), i.e., PCCT
achieves higher performance with almost all three metrics on
three datasets. For example, on the Skin7 dataset, PCCT achieves
a mean F1 score (MF1) of 86.20%, clearly higher than only
using the first stage (which results in a MF1 of 84.02%). This
is probably because the class center-involved triplet strategy
benefits triplet-based model training by avoiding anchor and
positive samples to be mapped far away, which stabilizes the
training when sample features show large variety in the frequent
class.

To evaluate the significance of the class-balanced sampling
strategy, an ablated version of the two-stage PCCT is carried
out without balancing sampling strategy in the first stage, i.e.,

the first stage uses a random sampler to construct triplets. As
shown in the third row of Table VII, the performance of this
ablated version is lower than PCCT with all three metrics on
the three datasets. This again shows the sampling strategy is
beneficial to constructing class-balanced triplets and therefore
benefits the classification performance.

For the ablation study on the triplet loss, we add an experi-
ment by replacing the triplet loss with traditional cross-entropy
loss in the two stages. As shown in Table VII (fourth row),
the performance of the ablated PCCT significantly decreases,
directly supporting the advantages of the proposed triplet loss
in extracting discriminative feature representations and tackling
the data imbalanced issue. The triplet loss directly helps samples
from the same (or different) class to have similar (or dissimilar)
features, which is beneficial for classification performance.

In addition, we conduct an experiment by replacing the train-
able class center with traditional triplets. As shown in Table VII
(fifth row), the classification performance is worse than that of
the proposed PCCT, directly supporting the advantage of using
class centers in triplet-based model training. Without using class
centers as positives and negatives, the triplet quality may get
worse because randomly selecting the positives and negatives in
the triplets may result in too far anchor-positive distance, which
damages the training stability.

E. Trainable Class Centers

We compare between the computed and the trainable class
centers by means of classification performance and computa-
tional time. As shown in the last two rows of Table III and
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TABLE IX
PERFORMANCE COMPARISON BETWEEN DIFFERENT INITIALIZATION METHODS ON THREE DATASETS

Fig. 4. The change in a representative evaluation metric (MF1) with
training epochs showing the convergence speed is not affected by the
initialization methods.

Table IV, the triplet loss with trainable class centers (Efficient-
PCCT) performs similarly well compared to the original PCCT
with computed class centers on all three datasets. However,
the original PCCT needs to calculate the class centers at each
training epoch, while the Efficient-PCCT simply updates the
class center along with the model parameters, which is more
efficient. As Table VIII shows, the training time decreases by
approximately 1/3 with the trainable centers. Thus, considering
its feasibility and effectiveness, trainable class centers may be a
better choice than the estimated class centers computed at each
training epoch especially when the training dataset is large.

We further explored the effect of initialization of the trainable
centers. As shown in the first three rows of Table IX, zero
initialization, Gaussian initialization, and uniform initialization
for the class centers do not result in significant performance
changes, i.e., the trainable centers are robust to these general
initialization methods. However, as shown in the last row of
Table IX, after training the first stage, if the centers of each
class are calculated and used as the initialization of class centers
for the second stage, the performance would be higher with
all three metrics on all three datasets. This demonstrates that
the first stage is beneficial to classification performance of the
trainable centers. In addition, the convergence performances
of the four initialization methods are tested. As shown in
Fig. 4, the convergence speed is not affected by the initialization
methods.

F. Discussions

From the above extensive evaluations, it is clear that the
proposed two-stage learning framework with certain metric
learning loss is effective in handling the class-imbalance issue
and outperforms widely used strong baselines under various
conditions. This is consistent with the previously reported two-
stage learning strategy TSD for the class imbalance issue [10].
However, different from TSD which simply trains the model
(mainly the feature extractor) with cross-entropy loss at the first
stage and then applies certain class re-balancing strategy at the
second stage, the class-balanced triplet loss and the class-center
involved triplet loss in the proposed framework can further
help train a better feature extractor by enforcing more compact
within-class distribution and enlarging the separation between
classes. Note that the class centers in the proposed framework
can be learned together with model parameters, reducing the
computational cost for class center estimate during model train-
ing. Consistent with our study, one recent work [36] used class
center loss to help train a feature extractor for imbalanced
image classification tasks. In addition, other types of metric
learning losses could be applied as well in the two-stage learning
framework, e.g., using contrastive loss [21] in the first stage,
which will be part of our future exploration following this study.

The proposed framework focuses on training a class-balanced
feature extractor. Therefore, it is complementary to many exist-
ing strategies which focus on the input side (e.g., re-sampling)
or output side (re-weighting, focal loss, etc.) of the classifier. For
example, our method may be combined with existing strategies
to further enlarge separation between classes, e.g., with the help
of the distribution-aware margin loss [6], or combined with
data augmentation techniques like Mixup to further alleviate
the data imbalance between classes [37]. Although promising
performance has been achieved on various imbalanced medical
datasets, the proposed two-stage framework with the triplet loss
has an obvious limitation, i.e., relatively longer training time
compared to the single-stage methods. Although the proposed
Efficient-PCCT can decrease training time in the first stage,
the second stage is still relatively time consuming. Replacing
the triplet loss by other types of metric learning loss (e.g.,
contrastive loss or graph-based loss) could largely alleviate this
issue. However, it is worth noting that the inference time is
determined mainly based on the model backbone and therefore
inference is in general near real-time for medical diagnosis.
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IV. CONCLUSION

In this paper, we propose a two-stage method PCCT to handle
the class imbalance issue. PCCT consists of two novel training
stages. The triplet loss with the class-balanced triplet sampler
is proposed to optimize the feature extractor model in the first
stage, and then the class-center involved triplet loss is proposed
to further fine-tune the feature extractor in the second stage
such that the distribution of each class in the feature space be-
comes more compact and easily separated from each other. The
classification performance on imbalanced datasets, stability, and
generality of the proposed PCCT on various model backbones,
output sizes, and hyperparameter settings are demonstrated by
extensive experiments. The class-center idea has also been eas-
ily extended to other relevant metric learning approaches. We
expect that this two-stage method will help effectively develop
intelligent diagnosis systems for both common and rare diseases.
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