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ABSTRACT
It is ideal to develop intelligent systems to accurately diag-
nose diseases as human specialists do. However, due to the
highly imbalanced data issue between common and rare dis-
eases, it is still an open problem for the systems to effectively
learn to recognize both common and rare diseases. In this
paper, we novelly applied triplet modelling to overcome the
data imbalance issue particularly for diagnosis of rare dis-
eases. Moreover, we further applied a class-center based
triplet loss in order to make the triplet-based learning more
stable. Extensive evaluation on two skin image classification
tasks shows that the triplet-based approach is very effective
and outperforms the widely used methods for solving the
imbalance problem.

Index Terms— Data imbalance, triplet loss, medical im-
age classification.

1. INTRODUCTION

Recent advances in deep learning has led to human-level
performance on intelligent diagnosis based on medical im-
ages [1]. However, it often requires large account of training
data to make deep neural networks work well. As a result,
current intelligent systems are mainly for the diagnosis of
commonly encountered diseases, leaving the intelligent diag-
nosis of rare disease as an open problem largely unsolved due
to the limited available data. To deploy intelligent systems
in real-world application, it would be important to make in-
telligent systems diagnose both common and rare disease as
human specialists do. In this study, we aim to overcome the
difficulty of training intelligent systems effectively under the
condition of data imbalance, i.e., large samples for common
diseases and small samples for rare diseases.

In order to solve the data imbalance issue, multiple ap-
proaches have been developed particularly to effectively
handle the small-sample classes. For example, it has been
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widely used to oversample the limited data from small-sample
classes or downsample the data from larger-sample classes
to make training data balanced between classes [2]. An-
other approach is to set larger coefficient weights to the loss
terms related to small-sample classes of training data, penal-
izing the mis-classification of each training data more heavily
when the data is from a small-sample class [3]. Different
from setting a single class-specific loss weight for all training
data of the same class, another approach is to adaptively set
a unique weight for each single training data, with higher
weight for the data difficult to be correctly classified. Boost-
ing [4, 5] and the recently proposed focal loss [6] belong to
this approach. Besides these traditional approaches, transfer
learning by fine-tuning a pre-trained convolutional neural
network (CNN) classifier has been proven helpful to improve
performance for small-sample classes [7, 8].

Different from the existing approaches, this paper nov-
elly applied the triplet loss [9] to effectively overcome the
data imbalance problem. In each triplet, two images are from
the same class and the third image is from another class. In
this way, the number of training data (i.e., triplets) relevant
to small-sample classes can be increased exponentially com-
pared to the number of individual images within the classes.
While the number of triplet training data among large-sample
classes would also be much more than individual images, the
triplet data can be easily balanced between classes by sam-
pling similar number of triplets for each class during model
training (note that sampling some triplets rather than using
all possible triplets for training is necessary due to the huge
number of triplets). Although triplet-based model training has
been employed in natural image analysis (e.g., FaceNet [9],
ReID [10, 11], triplet-center loss [12] ), to the best of our
knowledge, no study has investigated the effect of triplet-
based model training on data imbalance problems, particu-
larly for the diagnosis of common and rare diseases together.

Another contribution of this study is the novel applica-
tion of a class-center based triplet loss to further improve the
performance on data-imbalanced classification tasks. Specif-
ically, two data within each triplet are from the class centers
rather than randomly sampled from individual images. Such



class-center involved triplet can help each image attracted to
its class center, thus resulting in more compact distribution
for each class of images.

Experimental evaluation on two skin image datasets, both
of which are highly data-imbalanced between classes, shows
that the triplet-based model training outperforms the widely
used approaches such as oversampling, class weighting, and
using focal loss, irrespective of model structures. The evalua-
tion also shows that class-center involved triplets can further
improves the classification performance.

2. METHODS

2.1. Triplets for data-imbalanced disease classification

In order to develop an intelligent medical image classifica-
tion system to accurately diagnose both common and rare dis-
eases, we need to effectively train the (e.g., CNN) classifier
based on the limited training images especially for rare dis-
eases. The highly imbalanced training data between common
and rare diseases often cause biased prediction when applying
the trained classifier to the diagnosis of new images. The bi-
ased prediction may still exist when applying existing strate-
gies (e.g., over sampling, class weighting, etc.) to handle the
data imbalance issue during classifier training, probably be-
cause it is difficult to learn to extract the appropriate visual
features characterizing the corresponding rare diseases from
the very limited data (e.g., 20 images).

Considering the learning process of medical students who
learn to find and recognize unique features of one rare disease
by comparing the disease with others, embedding such ‘com-
parison’ process into model training could help the model
more effectively find discriminative features particularly for
rare diseases. Let xi and yi denote two images randomly
sampled from the same rare (or common) disease and zi sam-
pled from another (rare or common) disease. Here xi, yi, and
zi are often called anchor, positive, and negative respectively.
Then, the ‘comparison’ process can be naturally embedded
into model training by enforcing that the visual features of
the two images xi and yi extracted from the model (here a
CNN) are more similar than those between the two images xi

and zi from different diseases, i.e.,

‖f(xi;θ)− f(yi;θ)‖+ α < ‖f(xi;θ)− f(zi;θ)‖ , (1)

where θ represents the CNN model parameters to be learned,
and f(·;θ) represents the feature extraction process of the
CNN model, with an image as input and a feature vector
as output. ‖ · ‖ represents Lp norm (here p = 2), and α
is a positive constant to further enforce such inequality con-
straint. Based on this inequality constraint, the loss function
l(xi,yi, zi;θ) for the CNN model (i.e., feature extractor) can
be defined as

l(xi,yi, zi;θ) = [‖f(xi;θ)− f(yi;θ)‖+ α

−‖f(xi;θ)− f(zi;θ)‖]+ , (2)

where [d]+ = max(0, d) is the hinge loss. In Equation (2),
the three images form a triplet (xi,yi, zi) which is used as
a single training data for the loss function. Note that while
the number of individual training images for one rare dis-
ease are often small, the number of triplets which includes at
least one training image from the rare disease could be very
large. That means, when considering a triplet as one training
data, the number of training data relevant to each (particularly
rare) disease becomes large enough, such that an equally large
number of triplets relevant to each disease can be sampled
during training. Suppose there are totally N triplets involved
for model training, then the loss function over all the triplets
becomes

L(θ) =
1

N

N∑
i=1

l(xi,yi, zi;θ) . (3)

We would like to emphasize that, while the triplet loss (Equa-
tion 3) has been proposed for other natural image analysis
tasks (e.g., face identification [9]), we novelly apply the triplet
loss to solve the data imbalance issue.

2.2. Class-center based triplet loss

While the trained CNN model based on the above triplet loss
works well and already outperforms the existing approaches
(as shown in the Experiment section below), there still exists
one training issue due to the data imbalance between classes.
For a large-sample class, different images within the class of-
ten demonstrate large visual differences, causing the distri-
bution of this class of data spreading in a relatively large re-
gion in the original image feature space. Triplet-based model
training ideally would help make the distribution of each class
more compact in the learned feature space. However, when
randomly sampling images partly from the large-sample class
to form triplets, the images between two triplets but from
the same large-sample classes would likely demonstrate large
variations in visual contents. Such large variation may cause
the triplet inequality constraints (Equation 1) satisfied for one
triplet but not for another, which in turn causes instability dur-
ing triple-based model training. This may prevent the distri-
bution of the large-sample class in the learned feature space
not as compact as expected. Occupying larger region by the
large class in the feature space would likely cause more am-
biguous regions where multiple classes of data appear, lead-
ing to worse performance than desired.

To further improve the performance of triplet-based
model training, we propose to include global information
on the distribution of each class in triplets, thus replacing
the above triplet loss (Equation 2) by the class-center based
triplet loss

l(xi,yi, zi;θt) = [‖f(xi;θt)− c(xi;θt−1)‖+ α

−‖f(xi;θt)− c(zi;θt−1)‖]+ . (4)



Table 1. The details of the two skin datasets.

dataset class number
image number
in largest class

image number
in smallest class

Skin7 [14, 15] 7 6705 115
Skin198 [16] 198 60 10

Here, the feature f(yi;θ) of the positive image yi in the pre-
vious loss function (Equation 2) was replaced by the positive
center (c(xi;θt−1)) of the class containing both xi and yi in
the feature space, where the center c(xi;θt−1) was obtained
by averaging over features of all training images of the same
class based on the trained model (with parameters θt−1) from
the previous (t − 1)th epoch. Similarly, the feature f(zi;θ)
of the negative image zi from another class was replaced by
the negative center (c(zi;θt−1)) of the class containing zi.

With this new triplet loss, images of the same class would
be attracted to its class center over training epochs, thus ex-
pecting to result in more compact distribution for each class.
To initialize the model training from a good start, the pre-
trained model based on the triplet loss (Equation 2) can be
adopted at the first training epoch. This class-center based
triplet loss can be considered as the combination of the tradi-
tional triplet loss [9] with the single image-based class-center
loss [13]. It is also similar to the recently proposed triplet-
center loss for 3D object retreival [12]. Different from the
triplet-center loss which consider only the nearest negative
center for each anchor, the proposed method here considers
all negative centers for each anchor. In this way, the global
distribution of all classes in the image feature space is consid-
ered and could be updated more efficiently during training.
Also differently, the proposed class-center triplet loss here is
novelly applied to solve the data-imbalance issue.

3. EXPERIMENTAL EVALUATION

3.1. Experimental settings

Two image datasets involving human subjects were used to
evaluate the proposed method (see Table 1 for details) [14,
15, 16]. Multiple baseline training strategies relevant to data
imbalance were included for comparison, including the ba-
sic cross-entropy loss (’CE’), the cross entropy loss with
class weights (’WCE’), cross-entropy loss with the strategy
of oversampling (‘OCE’) and focal loss with class weights
(’WFCE’). In training, batch size=32 for all baselines. For
the proposed original triplet loss method (‘TP’), random-hard
triplet generation strategy (see reference [9]) was adopted,
based on 70 randomly selected images (10 per class) on
Skin7, 100 images (5 for each of 20 randomly chosen classes,
due to limited GPU memory) on Skin198 at each training
iteration. For the class-center involved triplet loss (‘TPC’),
32 images were randomly selected at each training itera-
tion. For each image, the feature representation of its class
center was computed based the model parameters from last
training epoch, and those (negative) classes centers which

contribute a non-zero losses to Equation 4 were selected.
Unless mentioned otherwise, ResNet-50 serves as the back-
bone for cross-entropy based classifiers, with the last original
output layer removed and a new fully connected layer with
the 128-dimensional feature vector as output for the proposed
approach (including TP and TPC). kNN (k=3 by default)
prediction and the nearest centroid based prediction were
respectively used for TP and TPC. In all experiments, Adam
optimizer was used with learning rate 0.001, β1 = 0.9, and
β2 = 0.99. α = 0.5 for triplet loss based training. Each clas-
sifier was evaluated with 5-fold cross validation, with average
precision, average recall, and average F1 score (‘MF1’) over
classes as the measurement for each validation. Each training
lasts for 250 epochs with clear training convergence, and the
best scores over 250 epochs were recorded on each validation
set for each model. The mean and standard deviation of each
measurement over the 5 validations were reported for each
test.

3.2. Effectiveness of the triplet-based approach

This section evaluates the effectiveness of the proposed ap-
proach (TP and TPC). Table 2 shows that the proposed ap-
proach performs better than all the baseline methods on both
Skin7 and Skin198 datasets. The proposed class-center in-
volved triplet loss (TPC) overall performs slightly better than
the proposed original triplet loss (TP), supporting the effect
of class centers on performance improvement. To investi-
gate more details about the effect of the proposed approach
on small-sample classes, we also collected the performance
of each method for the smallest class (only 115 images) on
Skin7 dataset and average performance over 70 classes (less
than 20 images for each class) on Skin198. Table 3 shows
that on both datasets, the proposed approach (TP and TPC)
improved the performance on the small-sample classes more
than on the large-sample classes. For example, the improve-
ment in mean F1 score from the strongest baseline OCE to
the proposed TPC is 3% on the small class of Skin7 (see Ta-
ble 3), while the improvement is only 1.1% when consider-
ing all classes (see Table 2). Similar larger improvement (
from 3% to 4.6%) on smaller data was observed on Skin198.
Wilcoxon Rank test showed that the performance of the pro-
posed approach TPC is significantly better than the all the
baseline methods (p-values < 0.05)

3.3. Generalizability of the triplet-based approach

To evaluate the generalization of the proposed approach, we
evaluated the proposed approach on multiple model architec-
tures and on different size of output dimension. Table 4 shows
that on four different CNN models [17, 18, 19, 20], the pro-
posed approach (TP and TPC) consistently outperforms all
the baseline methods. Tests with varying output dimensions
(not shown due to limited space) shows that the proposed



Table 2. Comparisons between the proposed approach with baseline methods on Skin7 and Skin198 datasets.
Skin7 Skin198

BCE WCE OCE WFCE
TP

(Ours)
TPC

(Ours) BCE WCE OCE WFCE
TP

(Ours)
TPC

(Ours)

MF1 83.65
(1.52)

82.45
(1.31)

83.53
(1.33)

83.52
(1.63)

84.31
(1.93)

84.89
(0.91)

51.91
(1.10)

60.21
(1.36)

59.77
(1.89)

53.28
(2.65)

61.90
(1.80)

63.21
(1.61)

Precision 86.96
(1.96)

83.35
(1.79)

87.26
(1.27)

86.43
(1.34)

88.31
(1.79)

88.42
(0.62)

56.41
(1.27)

64.82
(1.34)

64.87
(2.06)

58.31
(2.77)

66.11
(2.03)

65.55
(1.65)

Recall 81.15
(1.62)

82.06
(1.47)

80.81
(1.39)

81.25
(1.78)

81.11
(2.27)

83.02
(0.71)

52.12
(1.14)

60.23
(1.12)

59.34
(1.87)

53.34
(2.58)

62.10
(1.81)

64.68
(1.63)

Table 3. Performance of methods on small-samples classes of Skin7 and Skin198.
Skin7 Skin198

BCE WCE OCE WFCE
TP

(Ours)
TPC

(Ours) BCE WCE OCE WFCE
TP

(Ours)
TPC

(Ours)

MF1 73.67
(3.62)

77.96
(5.31)

74.05
(8.91)

76.21
(4.94)

75.58
(5.60)

81.22
(5.07)

18.59
(2.43)

53.37
(1.99)

56.41
(3.55)

20.36
(2.08)

59.31
(3.36)

61.03
(2.84)

Precision 79.03
(0.76)

87.18
(2.47)

84.93
(5.16)

84.96
(3.61)

86.89
(9.09)

89.45
(6.97)

24.22
(3.00)

65.21
(2.52)

66.46
(4.25)

26.83
(2.74)

66.68
(4.03)

63.69
(3.24)

Recall 69.39
(6.24)

70.83
(7.64)

66.17
(11.81)

69.35
(6.62)

67.78
(8.03)

75.30
(8.39)

16.67
(2.78)

49.79
(2.68)

53.42
(3.17)

17.99
(2.21)

58.45
(3.14)

63.87
(3.00)

Table 4. Classification performance with various model architectures on Skin198.
ResNet-50 DenseNet-121 Inception-v4 VGG-19

MF1 Precision Recall MF1 Precision Recall MF1 Precision Recall MF1 Precision Recall

BCE
51.91
(1.10)

56.41
(1.27)

52.12
(1.14)

41.60
(1.85)

44.57
(1.39)

42.85
(1.94)

50.22
(1.78)

53.73
(2.00)

50.83
(1.79)

33.75
(2.69)

35.69
(3.23)

35.52
(2.29)

WCE
60.21
(1.36)

64.82
(1.34)

60.23
(1.12)

55.04
(1.74)

61.42
(2.01)

54.62
(1.68)

57.92
(1.71)

62.30
(1.24)

58.08
(2.05)

47.09
(7.91)

50.43
(7.71)

48.08
(7.67)

OCE
59.77
(1.89)

64.87
(2.06)

59.34
(1.87)

57.72
(1.91)

63.86
(1.85)

56.96
(1.92)

56.79
(2.51)

61.83
(2.70)

56.49
(2.46)

50.85
(1.42)

53.99
(1.44)

52.09
(1.67)

WFCE
53.28
(2.65)

58.31
(2.77)

53.34
(2.58)

43.03
(1.28)

46.70
(1.08)

44.00
(1.37)

49.88
(2.65)

53.53
(2.33)

50.44
(2.86)

37.13
(1.98)

39.68
(2.41)

38.61
(1.73)

TP(Ours)
61.90
(1.80)

66.11
(2.03)

62.10
(1.81)

60.04
(2.16)

64.03
(2.52)

60.48
(1.86)

57.24
(1.67)

61.09
(2.37)

57.59
(1.24)

50.29
(1.43)

53.94
(1.52)

50.69
(1.58)

TPC(Ours)
63.21
(1.61)

65.55
(1.65)

64.68
(1.63)

62.62
(2.18)

64.94
(2.41)

64.26
(1.98)

59.25
(1.18)

62.43
(1.48)

60.12
(1.12)

52.49
(2.33)

55.39
(2.84)

53.49
(2.50)

method is still consistently better than corresponding base-
line methods with similar model architectures. In addition,
the effect of the hyperparameter α in the triplet loss was also
evaluated, showing stable performance when varying in the
range [0.2, 0.8], e.g., the mean F1 score varied from 84.4% to
84.9% on Skin7 which all outperformed the strong baseline
methods. These consistent results support that the proposed
approach is stable with high generalizability.

4. CONCLUSION

This paper introduces a new way to handle data imbalance is-
sues based on triplet loss. The improved class-center involved
triplet loss, together with the original triplet loss, outperforms
the widely used methods, which has been extensively verified

on two skin image classification tasks. The stable and gen-
eralizable performance of the proposed approach on multi-
ple model architectures, output dimensions, and hyperparam-
eter settings further confirm its capability in solving the data
imbalance issue. This new solution to data imbalance is es-
pecially helpful for the development of intelligent diagnosis
systems for rare diseases. Future work includes the study of
the proposed approach on more medical image datasets.
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