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Abstract

A method for Gaussian process learning of a scalar
function from a set of pair-wise order relationships is
presented. Expectation propagation is used to obtain
an approximation to the log marginal likelihood which
is optimised using an analytical expression for its gra-
dient. Experimental results show that the proposed
method performs well compared with a previous method
for Gaussian process preference learning.

1. Introduction

Given a collection of instances X = {xn, n =
1, . . . , N} and a set of M noisy labels, D = {vm �
um,m = 1, . . . ,M}, where each label indicates an
order relationship (denoted �) between two of the in-
stances, an interesting learning problem is to infer a
scalar target function f(x) that approximately satisfies
the order relationships specified by the labels. This
problem arises when learning users’ preferences for cer-
tain products or news topics [8], learning to rank [1],
and in multiclass classification [3]. In this paper, we
use Gaussian Process (GP) learning [3, 4, 8]. GP can
automatically determine its free parameters for model
selection and has been extensively applied to classifica-
tion and regression [6, 7]. Chu and Ghahramani [3] ap-
plied GP to learning preferences over pairs of instances.
They used a Laplace approximation (LA) of the poste-
rior at its maximum a posteriori (MAP) estimate and
gradient-based optimization of the resulting approxi-
mate evidence. Expectation Propagation (EP) [5] with
evidence maximization or variational methods has been
used to learn GP models for classification [6] or ordinal
regression [2]. While EP has consistently shown better
performance than LA for classification [6], it is not clear
how EP performs in the proposed scenario, i.e. learning
from order relationships. EP has been used with a vari-
ational method [1] to maximise a lower bound on the

marginal likelihood. The method proposed in this pa-
per avoids the need for this further approximation. It
uses EP to enable evidence maximisation and provides
an analytical formula for the gradient of the approxi-
mate marginal likelihood. In contrast to EP for classifi-
cation and regression which deals with likelihood func-
tions which are products of functions of a single latent
variable, the EP method here deals with likelihood func-
tions in which each factor is a function of a linear com-
bination of latent variables.

2. GP for Preference Learning

Chu and Ghahramani formulated preference learn-
ing as Gaussian process learning [1, 3]. This formu-
lation is summarised in this section for completeness.
In Gaussian process learning it is assumed that a latent
function value f(xn) is associated with each instance
xn [7]. The posterior is

p(f |X ,D) =
p(f |X ) p(D|f)

Z
, (1)

where f = [f(x1) f(x2) . . . f(xN )]T, and the de-
nominator Z = p(D|X ) =

∫
p(f |X ) p(D|f)df is called

the evidence or marginal likelihood. An appropriate
form for the likelihood function is [3]

p(D|f) =
M∏

m=1

p(vm � um|f(vm), f(um))

=
M∏

m=1

Φ(
αTfm√

2σ
) , (2)

where fm = [f(vm) f(um)]T, α = [1 − 1]T, and
Φ(·) is the cumulative normal distribution function. The
variance term σ2 should depend on the reliability of the
labels. Its inverse γ = σ−2 is known as the precision.

The Gaussian process prior is

p(f |X ) = N (f |0,C) , (3)
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where the covariance matrix C has entries C(i, j) =
exp {− 1

2�2 d2(xi,xj)}, and d(xi,xj) is an appropriate
distance measurement between xi and xj . All experi-
ments reported in this paper used Euclidean distance.

The hyper-parameters in this model are the variance
σ2 and the length-scale �. Learning can be formulated
as searching for hyperparameter values that maximize
the marginal likelihood p(D|X ). This marginal likeli-
hood is analytically intractable because the likelihood
(and therefore the posterior) is non-Gaussian. Chu and
Ghahramani [3] used Laplace’s method to approximate
the posterior as a Gaussian.

3 Transformation of Marginal Likelihood

By defining g = σ−1f and K = σ−2C [6], the
marginal likelihood can be written

Z =
∫

N (f |0,C)
M∏

m=1

Φ(
αTfm√

2σ
) df

=
∫

N (g|0,K)
M∏

m=1

Φ(
αTgm√

2
) dg

=
∫

p(g|X ) p(D|g) dg , (4)

where p(g|X ) = N (g|0,K) and p(D|g) =∏M
m=1 Φ(αTgm/

√
2). A motivation for this trans-

formation is that the hyperparameters appear only in
the kernel matrix K which has entries K(i, j) =
k(xi,xj) = γ exp {− 1

2�2 d2(xi,xj)}. This eases the
problem of hyperparameter estimation, as shown in
Section 5. The predictive distribution p(f(r)|r,X ,D)
for a latent function f(r) at any test instance r can be
directly computed from p(g(r)|r,X ,D) as

p(f(r)|r,X ,D) =
1√
γ

p(g(r)|r,X ,D) . (5)

Furthermore, given two test instances r and s, the prob-
ability of their order relationship p(r � s|X ,D) can be
computed from p(gt|X ,D), where gt = [g(r) g(s)]T,
since

p(r � s|X ,D)=
∫

p(r � s|ft,X ,D)p(ft|X ,D) dft

=
∫

p(r � s|gt,X ,D)p(gt|X ,D) dgt

(6)

4 Expectation Propagation

EP is an iterative Bayesian inference method to ap-
proximate a posterior as a Gaussian so that the corre-
sponding (approximate) marginal likelihood ZEP can
be analytically computed [5]. EP has been used to ap-
proximate non-Gaussian posteriors for Gaussian pro-
cess classification and regression problems [6, 7]. In
those settings, the likelihood is a product of functions of
single latent variables. However, given pairwise order
relationships, each factor in the likelihood is a function
of a linear combination of two latent variables. In what
follows, the use of EP is described for this setting. It is
described in a way that makes clear how to extend it to
likelihoods in which the factors are linear combinations
of more than two latent variables. Furthermore, it is a
generalisation of the classification/regression setting.

In this paper, EP is used to approximate p(g|X ,D)
rather than p(f |X ,D) for reasons given in Section 3.
It obtains a Gaussian approximation q(g|X ,D) by
approximating each factor Φ(αTgm/

√
2) as a non-

normalized Gaussian Z̃mN (gm|μ̃m, Λ̃
−1

m ):

q(g|X ,D) =
N (g|0,K)

ZEP

M∏
m=1

Z̃mN (gm|μ̃m, Λ̃
−1

m )

=
TM

ZEP
N (g|0,K)N (g|μ̃, Λ̃

−1
)

M∏
m=1

Z̃m

= N (g|μ,Ω) . (7)

where μ̃m is a 2-vector and Λ̃m is the inverse of a 2 ×
2 covariance matrix. The normalization factor TM is
generated when the local Gaussian approximations are

combined into N (g|μ̃, Λ̃
−1

) as

TM = (2π)
N
2 −M |Λ̃|− 1

2

M∏
m=1

|Λ̃m| 12

× exp{1
2
μ̃TΛ̃μ̃ − 1

2
ΣM

m=1μ̃
T
mΛ̃mμ̃m} .(8)

Also,

Λ̃ = ΣM
m=1βmΛ̃mβTm, μ̃ = Λ̃

−1
ΣM

m=1βmΛ̃mμ̃m ,

Ω = (K−1 + Λ̃)−1, μ = ΩΣM
m=1βmΛ̃mμ̃m ,

where βm is an N × 2 matrix that consists of the two
basis vectors corresponding to the indices of vm and
um in the data X . The marginal likelihood ZEP that
approximates Z in Equation (4) is then obtained directly
as the integral of this Gaussian:

log(ZEP |θ) =−1
2
μ̃T(K + Λ̃

−1
)−1μ̃
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−1
2

log |K + Λ̃
−1| − N

2
log 2π

+ log TM + ΣM
m=1 log Z̃m . (9)

The parameters {Z̃m, μ̃m, Λ̃m} of q(g|X ,D) are
estimated by EP. At each iteration, EP firstly re-
moves the effect of previously estimated Gaussian

N (gm|μ̃m, Λ̃
−1

m ) on the previously estimated Gaus-
sian approximation q(g|X ,D), resulting in an in-
complete Gaussian approximation q−m(g|X ,D) to the
posterior. Then, the new non-normalized Gaussian

Z̃mN (gm|μ̃m, Λ̃
−1

m ) can be obtained by approximat-
ing the combination of the in-complete Gaussian ap-
proximation q−m(g|X ,D) and the Φ(αTgm/

√
2) as

a Gaussian. The reader is referred to Rasmussen and
Williams for further details of this procedure [7].

5 Evidence Maximization

The hyper-parameters θ are estimated by maximiz-
ing the log marginal likelihood log(ZEP |θ) using a
gradient-based method. The gradient of log(ZEP |θ)
can be analytically computed as

∂ log(ZEP )
∂θj

=
1
2
μ̃T(K + Λ̃

−1
)−1 ∂K

∂θj
(K + Λ̃

−1
)−1μ̃

−1
2

tr((K + Λ̃
−1

)−1 ∂K
∂θj

) , (10)

where ∂K
∂γ has entries exp {− 1

2�2 d2(xi,xj)}, and ∂K
∂�

has entries γd2(xi,xj)
�3 exp {− 1

2�2 d2(xi,xj)}. Note that
the parameters {Z̃m, μ̃m, Λ̃m} need to be estimated at
each iteration of gradient descent when estimating the
hyper-parameters θ.

6 Prediction

Once the hyper-parameters have been determined,
the model can be used to make predictions [7].
Given a test instance r, the predictive distribution
p(g(r)|X ,D, r) is a Gaussian with mean μ∗

r = kTr (K+
Λ̃

−1
)−1μ̃, where kTr is the covariance vector with en-

tries kr(i) = k(r,xi). In addition as in [3], given any
two instances r and s, the probability of their order re-
lationship can be computed easily as p(r � s|X ,D) =

Φ( αTμ∗√
2+αTΩ∗α

), where μ∗ = [μ∗
r μ∗

s]
T, and Ω∗ is the

2 × 2 covariance matrix related to the two instances.

7 Empirical Evaluation

7.1 Toy Example

The method is first demonstrated on a toy problem
in which data were generated using a ground-truth sine
function y = sin(x). The collection X consisted of 50
points sampled uniformly in the interval [−π, π). Each
label was generated by drawing two random samples u
and v from X and specifying u � v if sin(u) > sin(v),
and specifying v � u otherwise. After obtaining the ap-
proximate posterior q(f |X ,D) (Equation 7), the map-
pings of 100 equally spaced points between −π and
π were computed (Section 6) and were plotted in Fig-
ure 1(a). This plot shows the results obtained when us-
ing 1, 5, 20, and 30 labels. As expected, the shape of
the plot becomes more like that of a sine function as the
number of labels increases. Note that the units of the or-
dinate are unimportant and the curves have been plotted
so that their maxima and minima are equal. Figure 1(b)
shows a plot of a log marginal likelihood log(ZEP |θ)
obtained by varying the two hyper-parameters when
using 30 labels. There is a maximum region around
log(�) = −1.2 and log(γ) ≥ 2.0.

7.2 Benchmark datasets

Table 1 shows a comparison with Chu and Ghahra-
mani’s Laplacian method (GPLA) on four benchmark
datasets used in their paper [3]. Since the same exper-
imental setting was used, the test results of Chu and
Ghahramani are reported directly. Each dataset con-
tained a number of multi-dimensional instances (‘d’
denotes the dimensionality) with corresponding scalar
ground-truth output. Data were normalized so that each
dimension had zero mean and unit variance. For each
dataset, a specified number (‘m’ in Table 1) of instance
pairs were randomly selected, and a label for each pair
generated by comparing the ground-truth outputs for
the two instances. Maximally 20, 000 pairs were ran-
domly generated for testing. The ordering for each test
pair was computed using the method (Section 6) and
compared with the ground-truth ordering. The train-
ing and testing process was repeated 20 times indepen-
dently. Two hyperparameter initialisations were tried:
log γ = 0.0 and log � = log d/2 as in [3] (‘GPEP’ in Ta-
ble 1), and log γ = 1.0 and log � = log d/2 (‘GPEP2’
in Table 1). In both cases, the proposed method gave
significantly better test results on the Machine CPU and
Boston Housing datasets, and comparable results on the
other two datasets. GPEP2 generated slightly better re-
sults than GPEP.

Figure 2 illustrates the change in test error as the
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Figure 1. (a) Predictions obtained using samples from a sine function and k pair-wise labels.
(b) A log marginal likelihood for k = 30.

Table 1. Test for preference learning.
ERROR RATE (%)

DATASET m d GPLA GPEP GPEP2
PYRIMIDINES 100 27 14.43±2.02 13.80±1.28 12.70±1.08
TRIAZINES 300 60 17.78±0.97 17.12±1.10 17.06±0.74
MACHINECPU 500 6 12.12±1.49 10.16±0.61 9.26±0.36
BOSTONHOUSE 700 13 12.85±0.46 10.28±0.49 9.29±0.38

number of labels is varied for the BostonHouse datset,
using GPEP2 with training pairs excluded from the test-
ing. Both the mean and standard deviation (dotted curve
and vertical bars in Figure 2) of test errors decrease to
convergent values (0.088 ± 0.003 × 100%) when the
number of preference pairs increases to 1000.
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Figure 2. Change of test error.

8 Conclusion

A method for learning a Gaussian process model
from data labelled with order relationships was pre-
sented. It used an analytical expression for the gradi-
ent of an approximate log marginal likelihood obtained
using EP. Experimental results on benchmark datasets
showed that the method performed better on some of
them, and at least as well on the others, as a previous

method using Laplace approximation. This suggests
that the proposed method resulted in improved model
selection (i.e. better estimates of the hyper-parameters)
and thus improved predictions. Currently we are ex-
ploring how to actively choose pairs for labelling.
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