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Abstract

This paper introduces a ‘low-rank prior’ for small ori-
ented noise-free image patches: considering an oriented
patch as a matrix, a low-rank matrix approximation is
enough to preserve the texture details in the properly ori-
ented patch. Based on this prior, we propose a single-patch
method within a generalized joint low-rank and sparse
matrix recovery framework to simultaneously detect and
remove non-pointwise random-valued impulse noise (e.g.,
very small blobs). A weighting matrix is incorporated in the
framework to encode an initial estimate of the spatial noise
distribution. An accelerated proximal gradient method is
adapted to estimate the optimal noise-free image patches.
Experiments show the effectiveness of our framework in re-
moving non-pointwise random-valued impulse noise.

1. Introduction
This paper aims to remove random-valued impulse noise

(RVIN) with varying sizes and irregular shapes (so called

‘non-pointwise’ RVIN, e.g., small particles suspended in

the water; see Section 6.4). Based on the observation that al-

most any properly-oriented (defined later) small noise-free

image patch (being a matrix) can be approximated by a low-

rank patch with texture details well preserved, we propose

a single-patch method to simultaneously detect and remove

RVIN within a generalized joint low-rank and sparse ma-

trix recovery framework. While the original matrix recov-

ery framework has been recently used for image and video

denoising [11], it requires multiple similar image patches,

with each patch vectorized as a column in the matrix. Such a

multi-patch method often limits the size of image patches to

be relatively small (e.g., 8×8 pixels) in order to more likely

find multiple similar patches within a single image and to

collaboratively and effectively remove traditional (single-

pixel) RVIN. Its performance degrades with non-pointwise

RVIN, as shown in our experiments even with noisy re-

gions as small as 3 × 3 pixels (Section 6.3). Instead, our

single-patch method completely avoids searching for simi-

lar patches, and importantly, using larger-size patches (e.g.,

40 × 40) in our method allows to effectively remove non-

ponintwise RVIN.

1.1. Related work

We briefly discuss related work on impulse noise re-

moval and low-rank matrix recovery; see [2] and [12] for

recent, comprehensive reviews on denoising.

There are mainly two types of impulse noise: salt-and-

pepper noise (black or white), and RVIN (any gray value).

The median filter and its extensions are often effective to re-

move salt-and-pepper noise but can corrupt some textures.

To reduce undesired corruption, various two-stage meth-

ods have been developed, first detecting the locations of

noisy pixels, then recovering intensities only at noisy lo-

cations using certain filtering or variational methods, e.g.,

adaptive center weighted median filter (ACWMF) [4], rank-

ordered absolute difference (ROAD) noise detector fol-

lowed by a trilateral filtering [9], and a logarithmic version

of the ROAD followed by edge-preserving regularization

(EPR) for pixel restoration (ROLD-EPR) [7]. Both ROAD-

trilateral and ROLD-EPR methods can preserve edges bet-

ter than median-type methods like ACWMF as they con-

sider local structures during pixel restoration. However, the

accuracy of these two-stage methods depends crucially on

the performance of the location stage. If noisy pixels cannot

be detected correctly, e.g., when noise is structured rather

than single-pixel, the overall noisy removal will be limited.

Given the excellent performance of non-local methods

[2, 5], learned sparse models [8, 18], and the combination

of both [6, 17] for random Gaussian noise, they were ex-

plored for impulse noise as well [20, 22]. Non-local meth-

ods use redundant visual information within an image (i.e.,

self-similarity) to group similar image patches together, fol-

lowed by collaborative filtering [2, 5]. Sparse methods also

use redundant information by assuming each patch can be

well approximated by a linear combination of a small subset

of patches (‘words’) within a large dictionary. Both types

of methods can preserve texture details very well. How-

ever, patch size is limited (e.g., 8 × 8 pixels) as it may be-

come difficult to find multiple similar larger-size patches

within an image for non-local methods, and to represent a
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larger-size patch by a linear combination of other patches

for sparse methods. Crucially, impulse noise often needs

to be detected first to reduce the effect of noisy pixels on

patch matching and dictionary learning. Similar to two-

stage methods, the overall accuracy of impulse noise re-

moval is largely limited by the performance of the initial

impulse noise location.

A joint low-rank and sparse matrix recovery framework

was recently used to detect and remove impulse noise si-

multaneously [11], remove background, and remove shad-

ows and specularities from face images [3]. However, the

method is limited by the usage of multiple similar patches

and the small size of patches.

Unlike the above, this paper uses a different type of prior

information, the ‘low-rank prior’, not for the whole image

but for each image patch. It has been observed that low-rank

textures exist in image regions having deterministic regular

or periodic patterns [14, 21]; we found that almost any small

(e.g., 10×10 to 40×40) image patch from images of natural

or man-made objects or scenes (within our experiments, see

Section 6), if rotated by a characteristic orientation defined

later, has a low-rank approximation with texture details (in-

cluding edges) well preserved (see Section 6.1).

2. Problem formulation
When a rectangular gray image patch P contains ran-

dom Gaussian noise and RVIN, P may be decomposed as

P = L∗ + S∗ + N∗, where L∗ represents the unknown

noise-free patch, S∗ represents the unknown impulse noise

(precisely, the difference between the noise and the corre-

sponding noise-free pixel values), and N∗ is a matrix of

Gaussian noise [11].

L∗ can be considered a low-rank matrix due to the low-

rank prior for single patches (Section 6.1). Also, since the

number of pixels corrupted by impulse noise is generally

much smaller than the total number of pixels, S∗ is a sparse

matrix. As a result, the problem of image denoising can be

formulated as an optimization problem [11], i.e., to mini-

mize E1(L,S) over the matrix variables L and S,

E1(L,S) = ‖L‖∗ + λ ‖S‖1 +
1

2μ
‖P− L− S‖2F , (1)

where ‖·‖∗ is the nuclear norm (i.e., sum of singular values)

and considered as a convex relaxation of the rank measure-

ment of the matrix; ‖·‖1 is the sum of the absolute values of

all matrix entries and considered as a convex relaxation of

the sparsity measurement (i.e., number of non-zero entries)

of a matrix; ‖ · ‖F is the Frobenius norm; and λ, μ are two

regularization parameters.

While the above optimization framework has been used

for image and video denoising [11], each image patch was

considered as a column in a matrix. Such a multi-patch

method is subject to the limitations discussed in Section 1.

(a) (b) (c) (d)

Figure 1: Illustrative example of low-rank matrix recovery.

(a) A synthetic clean image patch of size 40×40 pixels with

rank 20. (b) A synthetic noisy patch by adding a smaller

(3×3 pixels) non-pointwise RVIN at the top-left corner and

a larger (9× 9 pixels) one around the center. (c) The larger

noise has been largely remained by minimizing Equation

(1). (d) Both are removed by minimizing Equation (2).

Now more specifically, using larger-size patches in the

multi-patch method will generally make multiple patches

less similar to each other and hence lead to over smooth-

ing of the current patch (Figures 9 and 10). Compared to

the multi-patch method, our method requires no search as

it considers a single patch as the matrix P and the patch

size can be larger (e.g., 41× 41) without decreasing the ef-

ficiency of matrix recovery. More importantly, using larger-

size patches allows us to remove non-pointwise RVIN.

The limited ability of the optimization framework (Equa-

tion 1) to remove non-pointwise impulsive noise is an-

other key limit we address. The minimization of E1(L,S)

will generally lead to relatively small ‖L̂‖∗ + λ‖Ŝ‖1 (and
1
2μ‖P− L̂− Ŝ‖2F as well) at the estimated optimal solution,

L̂ and Ŝ. However, if very different (e.g., with much higher

intensity value than the signal) non-pointwise impulse noise

exists, the true solutions S∗ and L∗ often correspond to a

much larger λ‖S∗‖1 (due to the set of higher impulse noise

values) and modestly smaller ‖L∗‖∗ than those at the esti-

mated solution Ŝ and L̂. So the the minimum may not cor-

respond to the true solution, i.e., E1(L
∗,S∗) > E1(L̂, Ŝ),

and the non-pointwise impulse noise will remain, to some

extent, in the estimated optimal signal L̂ (Figure 1c).

Hence we propose a generalized version of the optimiza-

tion framework to denoise an image patch effectively in the

presence of non-pointwise (multi-pixel) RVIN:

E2(L,S) = ‖L‖∗+λ ‖W ◦ S‖1+
1

2μ
‖W ◦ (P− L− S)‖2F

(2)

where W is a soft-weighting matrix with each entry value in

[0, 1], and ◦ denotes the Hadamard (i.e., entry-wise) prod-

uct of two matrices. When every entry in W is set to 1,

E2(L,S) becomes E1(L,S).

W can encode the initially estimated spatial distribution

of impulse noise in the image patch. Initial estimates, ob-

tained by any impulse noise detector, correspond to entries

in W with values close to 0. Compared to the original op-

timization framework, Equation (1), the true solution, S∗,
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will more likely correspond to a much smaller λ‖W◦S∗‖1,

because (at least part of) the higher impulse noise values are

counterbalanced by the corresponding smaller entry values

in W. From the regularization point of view, smaller entry

values at initially estimated impulse noise locations in W
will decrease the regularization effect of the second and the

third terms in E2(L,S), such that the entries at the corre-

sponding locations in the matrix variable L can be searched

in a larger feasible region in order to get a smaller ‖L‖∗.
As a result, the ground-truth solution L∗ will more likely

correspond to the minimum of E2(L,S). Therefore, W is

expected to effectively help recover the corrupted signals

(Figure 1d).

3. Optimization
The target function E2 in Equation (2) can be minimized

by accelerated proximal gradient (APG) [15, 19], which

was recently developed to solve the original optimization

problem, Equation (1). Noticing that W is a constant ma-

trix, we can extend the original APG method to minimize

E2(L,S). More specifically, substituting S ← W ◦ S and

P←W ◦P, E2 becomes

E3(L,S) = ‖L‖∗ + λ ‖S‖1 +
1

2μ
‖P−W ◦ L− S‖2F .

(3)

The only difference between E3 and E1 is the entry-wise

weighting of L in the third term. Since such a difference

does not change the conditions under which APG is applied,

i.e., the cost function consists of a non-smooth convex func-

tion g(L,S) = ‖L‖∗ + λ ‖S‖1 and a smooth convex func-

tion f(L,S) = 1
2μ ‖P−W ◦ L− S‖2F with its gradient

∇f(L,S) Lipschitz continuous, APG to minimize E1 can

be directly extended to minimize E3. For details see Algo-

rithm 1, where Sτ (Z) is the entry-wise shrinkage operator

on the matrix Z, i.e., Sτ (z) = sgn(z)max(|z| − τ, 0) for

any element z in Z and sgn(z) is the sign of z. As in the

original APG [15, 19], a continuation technique is applied

in Algorithm 1 to reduce the number of necessary iterations

by varying μ, i.e., starting from a large initial value μ0 and

then geometrically decreasing (ρμk) over iterations until it

reaches the floor μ.

The main difference between Algorithm 1 and the orig-

inal APG one is in Steps 2, 6, and 7, where W plays its

role in the recovery of the low-rank matrix L. Note that the

output S is the weighted sparse matrix. The final S can be

easily estimated from the difference between the input P
and the output L (see [22])

4. Computing the weighting matrix W

The soft-weighting matrix W is a required input to the

proposed method (see Algorithm 1). The basic procedure

to generate W is as follows. First, the candidate impulse

Algorithm 1 APG method to minimize Equation (2)

Input: P,W, λ.
1: L0 = L−1 = 0;S0 = S−1 = 0; t0 = t−1 = 1; 0 < μ < μ0; 0 <

ρ < 1;
2: P←W ◦P;
3: while not converged do
4: YL

k = Lk +
tk−1−1

tk
(Lk − Lk−1);

5: YS
k = Sk +

tk−1−1

tk
(Sk − Sk−1);

6: GL
k = YL

k − 1
2
W ◦ (W ◦YL

k +YS
k −P);

7: GS
k = YS

k − 1
2
(W ◦YL

k +YS
k −P);

8: (U,Σ,V) = svd(GL
k ),Lk+1 = USμk/2

(Σ)VT;

9: Sk+1 = Sλμk/2
(GS

k );

10: tk+1 =
1+

√
4t2

k
+1

2
;μk+1 = max(ρμk, μ);

11: k ← k + 1;
12: end while
Output: L← Lk,S← Sk.

noise locations in an image patch are estimated by any of

the methods suggested below to obtain a binary weighting

matrix W0, in which each entry is set to 1 at the initially

estimated impulse noise pixels and 0 elsewhere. Then W0

is convolved with a un-normalized 2D Gaussian operator

G(i, j) = exp{− 1
2σ2

0
(i2 + j2)}, to generate a soft version

W, where entries with higher value than 1 are set to 1. The

final weighting matrix, W, is set to 1 −W, where 1 is a

matrix with every entry equal to 1. Consequently, the en-

tries of W at or near the initially estimated impulse noise

locations will have smaller values than elsewhere.

In practice, the binary matrix W0 can be generated by

any existing impulse noise detectors (e.g., ROAD [9] or

ROLD [7]), or even by our low-rank matrix recovery frame-

work by setting W = 1. This is because our framework

(when W = 1) also recovers the sparse matrix S represent-

ing the initial spatial distribution of impulse noise. Note that

the denosing performance of the proposed method is robust

to occasional errors in the estimated W. If certain noise-

free pixels occasionally have smaller weights in W, such

lower-weighted noise-free pixel values won’t be changed

too much in the final denoised low-rank patch because the

rank of the patch is already small without changing these

pixel values, while changing pixel values will probably in-

crease the value of the second cost term in Equation (2).

5. Characteristic orientation for each patch

One potential issue in denoising methods is edge blur-

ring and loss of sharpness. Patch orientation affects the re-

sult of our rank-based method. For example, even a patch

with a simple pattern may have a high rank (Figure 2, patch

in blue rectangle). In this case, the low-rank approxima-

tion of the patch will blur the sharp edge (Figure 2b). In-

stead, if we can find a low-rank patch (Figure 2, patch in

yellow rectangle) by rotating around the target image point,
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(a) (b) (c)

Figure 2: Effect of characteristic orientation on low-rank

patch approximation. (a) A synthetic image. (b) A low-rank

(rank 15) approximation of a 41 × 41 image patch around

the image center. (c) The low-rank (rank 1) approximation

of an oriented image patch around the same point.

the low-rank approximation of this patch will more likely

preserve the sharpness of the edges (Figure 2c). Similar ob-

servations apply for patches with other texture patterns like

corners, and experiments (Figure 8) show the importance of

characteristic orientation in denoising.

Based on the assumption that the optimally oriented

patch is low-rank, we expect that the difference between

the oriented patch and its low-rank approximation will be

minimum at the optimal (‘characteristic’) orientation. To

compute the latter, let P(θ) denote an oriented m × n im-

age patch at a given image position, rotated anticlockwise

by an orientation angle θ with respect to the image row di-

rection, and P̃(θ) the low-rank approximation (to a fixed

quality level) of P(θ). Then the characteristic orientation at

the current image position can be estimated as

θ̂ = arg min
θ∈[0,π]

d(θ) = arg min
θ∈[0,π]

1

mn

∥∥∥P(θ)− P̃(θ)
∥∥∥
2

,

(4)

where ‖ · ‖ is a matrix norm (we use Frobenius), and θ is

restricted in the range [0, π] because any pair of θ and θ+π
will lead to the same norm value.

In the above, ‘quality level of the low-rank approxima-

tion’ should be defined and a threshold introduced. How-

ever we found that a basic, efficiently computed rank-1 ap-

proximation of P(θ) to represent P̃(θ), i.e., every column in

P̃(θ) is the mean of all columns in P(θ), leads to very good

overall results especially in preserving edges. Such a sim-

ple, threshold-free approximation proved effective enough

to find reliably the characteristic orientation for each image

patch (see Section 6.2).

6. Experiments

Our APG algorithm (Algorithm 1) was implemented by

modifying the public MATLAB source code for the orig-

inal APG [15]. Similar to the parameter settings in [3],

μ0 = 0.99‖W ◦ P‖2 and μ = 10−9μ0. For an m × n
image patch P, λ = 1/

√
max(m,n). The maximum iter-

ation number is set to 200. To find the characteristic ori-

entation θ̂, a simple uniform sampling method was adopted

with sampling interval π
36 . σ0 and the window size for the

un-normalized Gaussian filter G were set to 1
36 min (m,n)

and 1
6 min (m,n) respectively. When using the initially es-

timated sparse matrix S to generate W0, the candidate noise

locations are the entries where the absolute value is larger

than a threshold, determined adaptively based on the ex-

pected sparsity level of the noise (i.e., number of noisy pix-

els over total pixel number). We use a sparsity level of 0.05.

All the tests were performed using Matlab R2010a run-

ning on an Intel Core i7-2600K 3.40GHz PC with 8.0GB

RAM. For an image with size 640×480 pixels, and patches

with size 41×41 pixels and 50% overlapped by neighboring

patches along both directions, totally it takes approximately

3 minutes to generate the denoised image. Since each im-

age pixel is often covered by multiple patches, the final de-

noised value at each pixel in the image is averaged from the

corresponding denoised pixels in these multiple patches.

6.1. Low-rank prior in single patches

We illustrate the experimental foundation of the low-

rank prior for small noise-free image patches. In practice,

due to noise, an image patch as a matrix is seldom low-

rank. However, if the assumption of low-rank prior is true,

the column-wise signal variation in an image patch should

be mostly preserved in a much lower-dimensional space,

and the low-rank approximation should preserve meaning-

ful textural details. Such predictions are confirmed empiri-

cally from the following tests with the public datasets Cal-

tech256 [10] and SceneCategory15 [13]. Around 450, 000
oriented (i.e., rotated to their characteristic orientations)

patches with sizes 21×21 and 41×41 pixels were generated

from each dataset by uniform sampling in each image.

The first test explores statistically the order of the low-

rank approximation needed to preserve, at a given level

β, the column-wise signal variation in each m × n image

patch. Every patch is first decomposed by SVD and the

minimum number l̂ of singular values necessary to preserve

the predefined level of signal variation is determined by l̂ =

argminJ∈[1,min (m,n)]{β <
∑J

j=1 σj/
∑min (m,n)

j=1 σj},
where σj is the j-th largest singular value. Different patches

may have different rank values l̂. A rank histogram can

be easily generated recording the frequency of patches with

a particular rank value. The cumulative rank histogram in

Figure (3a) (thinner blue line) shows that when preserving

95% of the column-wise signal variations, about 90% im-

age patches have low-rank approximations with rank equal

or smaller than 11. When β = 0.9, more than 98% im-

age patches have low-rank approximations with rank equal

or smaller than 10. Similar results were obtained for vari-

ous sizes in both datasets (Figure 3b). This shows that most

oriented patches can be approximated by their low-rank ver-

sions which keep most signal variations.

The second test shows that low-rank patch approxima-
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(a) (b)

Figure 3: Low-rank prior in image patches with size (a)

21 × 21 (from Caltech256) and (b) 41 × 41 pixels (from

SceneCategory15).

(a) (b)

Figure 4: Average rank value of each cluster for image

patches with size (a) 21 × 21 (from Caltech256) and (b)

41× 41 pixels (from SceneCategory15).

tions can preserve textural details. A fast k-means method

[1] was applied to cluster the patches of a fixed size into

200 clusters using the datasets above. The average l̂ over all

patches was computed within each cluster. Figure 4 (solid

curves) shows the sorted average rank values for all the clus-

ters. Consistent with the first test, when β = 0.95, most

clusters have average rank values less than 10 for 21 × 21
patches and less than 20 for 41×41 patches. The small sub-

set of clusters with larger average rank values often corre-

spond to the patches with more complex visual appearance

or patterns. Within each such cluster, the highest-rank (l̂)
image patch was chosen to represent the most complex vi-

sual pattern. Figure 5a lists such image patches and the cor-

responding low-rank approximations. It can be observed

that, even for the patches with most complex texture pat-

terns, the textural details have all been preserved in the low-

rank approximations. Similar observations have been found

for the 41 × 41 image patches (Figure 5b). While such ob-

servations are seemingly trivial, it is actually not true for (at

least some) un-oriented patches (see Figure 2b).

In addition, when adding RVIN to the image patches

by corrupting 5% pixels in each patch, Figure 4 (dashed

curves) also shows that the average rank values increased.

It suggests that not only the noise-free image patches are

low-rank, but also the noisy patches have higher ranks at a

(a)

(b)

Figure 5: Image patches for the 5 clusters with highest av-

erage rank values, with patch size (a) 21 × 21 pixels (top:

original; bottom: rank-10 approximation) and (b) 41 × 41
pixels (top: original; bottom: rank-20 approximation).

predefined level β. The proposed low-rank matrix recovery

framework just makes use of this observation for removing

noise from image patches.

6.2. Determination of characteristic orientation

The first test here checks whether the determination of

characteristic orientation is invariant to changes in patch

sizes. As an example, we use an image patch (Figure

6a top) from a noisy and low-contrast underwater hydro-

colonoscopy image (Figure 8a). Figure (6) shows that for a

large range of patch sizes (e.g., 21× 21 to 41× 41), the es-

timated characteristic orientations are almost the same (see

the minimum of each curve in Figure 6b). This invariance

to patch sizes is especially beneficial to denoising images

with textures at different scales.

The second test checks whether the orientation determi-

nation is robust to noisy patches. Given an image patch

(Figure 7 top left), Figure (7) shows that the estimate of the

characteristic orientation is robust to RVIN noise, even if

30% of image pixels have been damaged by RVIN.

The third test compares the proposed method with

the well-known ‘SIFT-orientation’ method [16], where the

dominant gradient direction was determined based on the

weighted histogram of gradient orientations. The image

was smoothed twice by a Gaussian with standard devision

1.6 and window size 6 ∗ 1.6 pixels, and then gradient with

4 pixels spacing along both dimensions was computed at

every location. Different Gaussian and spacing parameters

were tried with results similar to Figure (8b). Compared to

the results by the proposed method (Figure 8c), the char-
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(a) (b)

Figure 6: Determination of characteristic orientation. (a)

An original low-contrast 41× 41 image patch (top) and the

oriented version (bottom) (better view on monitor). (b) d(θ)
over all possible orientation angles with three patch sizes.

Figure 7: Robustness of characteristic orientation determi-

nation. Top row (left to right): original image patch, ori-

ented patches with noise sparsity level at 0.00, 0.05, 0.10,

0.15, 0.20, 0.25, and 0.30. Bottom: estimated characteris-

tic orientation with varying noise sparsity levels, with mean

(solid curve) and standard deviation (dotted curve) values

from 10 runs.

acteristic orientations by the SIFT-orientation method are

often not precisely orthogonal to the dominant edge in each

image patch, probably due to the noisy environment. In

the denoised result, based on the proposed matrix recov-

ery framework, certain edges have been blurred when us-

ing SIFT-orientation method (Figure 8e). In comparison,

the sharpness of edges has been preserved by the proposed

method (Figure 8f). While sampling error is introduced to

the oriented patches due to rotation of the original patches,

the image quality loss due to sampling error appears to be

much smaller compared to image enhancement due to noise

removal from the oriented patches. This is supported by

Figures 8d-8f, which shows that both orientation methods

perform better than without using any orientation determi-

nation (Figure 8d).

6.3. Removal of impulse noise

To evaluate our method quantitatively, RVIN with differ-

ent sizes (e.g., 1× 1 to 4× 4 pixels) at a particular sparsity

level (i.e., 0.1 ) was added to the noise-free images to gen-

erate the noisy images. Although only two well-known im-

ages (‘Barbara’ and ‘Lena’) were used to demonstrate the

performance due to limited space, similar results have been

obtained for other widely-used standard images (e.g., Ba-

boon, Finger, etc). The denoising performance was mea-

sured by standard peak signal-to-noise ratio (PSNR).

Four denoising methods were chosen for comparison:

the median filtering as the baseline method, the ROLD-

EPR method [7], the multi-patch low-rank matrix recovery

method (MPLR) [11], and the proposed method without

applying the weighting matrix W (henceforth ‘Proposed

\W’). For median filtering, 20 iterations were run with

window size 3 × 3 pixels. The PSNR was computed after

each iteration and the highest PSNR value reported. Simi-

larly for ROLD-EPR, the maximum iteration was set 20, the

window size was 5 × 5 and all the other parameters were

set as suggested in [7]. The highest PSNR over all itera-

tions was reported. For MPLR, all the parameters were set

as suggested in [11], except that four different patch sizes

(i.e., n×n, n ∈ {4, 8, 16, 32}) were tried and 10 additional

similar patches were searched (to generate a n2×11 matrix)

across the whole image when denoising each image patch.

The highest PSNR over the different patch sizes was re-

ported. For our method, the patch size was fixed to 31×31,

the highest PSNR was reported over different λ = s/
√
31,

where s ∈ {1.0, 1.3, 1.6, 2.0}. For each method, 10 runs

were performed, with PSNR standard deviation around 0.1.

Table 1 (last two rows) shows that the proposed method

consistently performs comparable or better than ‘Proposed

\W’ (26.45 and 26.40 for ‘Barbara’ 3×3 RVIN are not sig-

nificantly different). The substantial improvement in PSNR

for large-size (i.e., 4 × 4) RVIN is due to the effect of the

weighting matrix W. Table 1 also shows that the proposed

method performs better than the other methods with non-

pointwise RVIN (i.e., 3 × 3 and 4 × 4). This is probably

due to the limited ability to detect and remove large-size

RVIN by the ROLD-EPR method, and the oversmoothing

by median filtering and MPLR, as demonstrated in Figure

9c. For the image with more textured regions (i.e., ‘Bar-

bara’), the proposed method also performs better even when

RVIN is smaller (i.e., 1 × 1 and 2 × 2). Figure 9a and

9a show that noticeable noise still remains after denoising

by ROLD-EPR, and the regular patterns have been blurred

by MPLR. Consistent with PSNR assessment, the proposed

method gave the best visual quality. For the image with

less textured regions (i.e., ‘Lena’), ROLD-EPR performs

best for RVIN of size 2 × 2. However, careful inspec-

tion found that about 20% RVIN were still noticed in the

denoised image by ROLD-EPR. In comparison, only 8%
RVIN were noticed in the denoised image by the proposed

method. This indicates that the higher PSNR by ROLD-

EPR is largely from keeping the non-corrupted pixels from

changed rather than removing more RVIN. In addition, the
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(a) (b) (c)

(d) (e) (f)

Figure 8: Characteristic orientation and its effect on denoising. (a) The original image. The orientation (by arrow) determined

by (b) the SIFT-orientation method and (c) the proposed method for 41 × 41 patches. Two cropped denoised image regions

(d) without orientation determination, (e) using the SIFT-orientation method, and (f) using the proposed method.

Table 1: PSNR from different methods for different sizes of

RVIN.
Barbara Lena

1× 1 2× 2 3× 3 4× 4 1× 1 2× 2 3× 3 4× 4
Noisy image 19.02 19.09 19.00 18.93 19.43 19.52 19.56 19.30

Median 24.90 23.90 23.28 18.94 33.64 30.78 28.65 20.37

ROLD-EPR 29.48 26.80 18.99 18.90 35.89 33.58 19.63 19.34

MPLR 28.60 25.95 24.06 23.61 37.18 31.34 27.28 26.58

Proposed \W 29.69 28.13 26.45 23.99 33.32 30.99 28.65 25.15

Proposed 30.69 28.43 26.40 25.34 34.44 31.12 28.90 27.30

superior performance by MPLR when RVIN size is 1 × 1
simply confirms the previous-study result when combining

the non-local idea with low-rank matrix recovery [11].

6.4. Particle removal in hydrocolonoscopy images

The proposed denoising method is also capable of re-

moving particles in hydrocolonoscopy images, where the

particles with various sizes (maximumly 15 × 15 pixels)

were suspended in water, creating non-pointwise RVIN.

About 1000 hydrocolonoscopy images were extracted from

a video captured by a colonoscope moving within a

reversed-engineered phantom of a human colon segment

immersed in turbid water in a tank. Figure 10 displays an

exemplar hydrocolonoscopy image and the denoised result

with the MPLR and the proposed method. The patch size is

41×41 for the proposed method and 16×16 for the MPLR

method in order to remove large-size particles. MPLR over-

smoothed the image with larger particles partially remain-

ing (Figure 10c and 10d). The ‘Proposed \W’ can preserve

sharpness but cannot remove large-size particles effectively

(Figure 10e and 10f). The proposed method can remove

(a)

(b)

(c)

Figure 9: Part of denoised images from different methods

with noise size (a) 1 × 1, (b) 2 × 2, and (c) 3 × 3 pixels.

From left to right in column: noisy patch, denoised result

by ROLD-EPR, MPLR, and the proposed method.

the particles effectively while preserving the sharpness of

the edges (Figure 10g and 10h). Similar results have been

obtained for other hydrocolonoscopy images.

7. Conclusions

This paper has introduced a low-rank prior for small ori-

ented (rotated by a characteristic orientation angle) noise-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Removal of particles suspended in a hydro-

colonoscopy image. (a) The original noisy image. (b) De-

noised image by MPLR with patch size 16× 16 pixels. (c)

Denoised image by the proposed method without W (dark

boundary regions not denoised). (d) Denoised by the pro-

posed method. (e-h) Two image patches cropped from each

of the images in (a-d).

free image patches. The low-rank prior suggests that a sin-

gle patch can be effectively denoised within a low-rank ma-

trix recovery framework. Without resorting to other simi-

lar patches, the single-patch method can effectively remove

non-pointwise RVIN within a generalized low-rank matrix

recovery framework, and encode the initial estimation of

noise locations effectively. Experimental results show the

better performance of the proposed approach over several

methods, especially for non-pointwise RVIN. Removing

random Gaussian noise and video denoising will be ex-

plored as future work.
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