
Generative adversarial network Wasserstein GANs

Week 8: Generative Adversarial Networks

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

18 April, 2019



Generative adversarial network Wasserstein GANs

1 Generative adversarial network

2 Wasserstein GANs



Generative adversarial network Wasserstein GANs

Generative model

Objective: generate new data by learning from training data

Various applications: realistic new designs, super-resolution,
colorization, etc.

Data augmentation: more realistic data for model training

Data mining: exploring latent structure/representation of data

Figures here and in the next 7 slides from Stanford CS231n 2017 Lecture 13;
also see Goodfellow et al., “Generative adversarial nets”, NIPS, 2014



Generative adversarial network Wasserstein GANs

Generative model (cont’)

What to learn from training data?
One way is to learn data’s density distribution from training
data, then generate new data from the learned distribution.

Difficulty: never know real data complex distribution Pdata(x),
therefore difficult to learn its approximation Pmodel(x)

Solution: learn to generate new data directly, without learning
the data distribution!



Generative adversarial network Wasserstein GANs

Generative model (cont’)

What to learn from training data?
One way is to learn data’s density distribution from training
data, then generate new data from the learned distribution.

Difficulty: never know real data complex distribution Pdata(x),
therefore difficult to learn its approximation Pmodel(x)

Solution: learn to generate new data directly, without learning
the data distribution!



Generative adversarial network Wasserstein GANs

Generative model (cont’)

What to learn from training data?
One way is to learn data’s density distribution from training
data, then generate new data from the learned distribution.

Difficulty: never know real data complex distribution Pdata(x),
therefore difficult to learn its approximation Pmodel(x)

Solution: learn to generate new data directly, without learning
the data distribution!



Generative adversarial network Wasserstein GANs

Generative model (cont’)

Problem: How to generate data without learning complex
high-dim (image) data distribution?

Idea: sample from simple distribution (e.g., of random noise),
and learn a complex transformation from simple distribution
to the (unknown) complex distribution of image data.

If using a neural network to represent the transformation, the
objective is to train the network to generate realistic images
whose distribution is similar to that of training dataset.



Generative adversarial network Wasserstein GANs

Generative model (cont’)

Problem: How to generate data without learning complex
high-dim (image) data distribution?

Idea: sample from simple distribution (e.g., of random noise),
and learn a complex transformation from simple distribution
to the (unknown) complex distribution of image data.

If using a neural network to represent the transformation, the
objective is to train the network to generate realistic images
whose distribution is similar to that of training dataset.



Generative adversarial network Wasserstein GANs

Generative model (cont’)

Problem: How to generate data without learning complex
high-dim (image) data distribution?

Idea: sample from simple distribution (e.g., of random noise),
and learn a complex transformation from simple distribution
to the (unknown) complex distribution of image data.

If using a neural network to represent the transformation, the
objective is to train the network to generate realistic images
whose distribution is similar to that of training dataset.



Generative adversarial network Wasserstein GANs

Generative adversarial network (GAN): a two-player game

How to evaluate whether generated images have a similar
distribution to the training set?

Key insight: Use another network to help evaluate it!

G network: try to fool D by generating realistic images

D network: try to distinguish between real and fake images



Generative adversarial network Wasserstein GANs

Generative adversarial network (GAN): a two-player game

How to evaluate whether generated images have a similar
distribution to the training set?

Key insight: Use another network to help evaluate it!

G network: try to fool D by generating realistic images

D network: try to distinguish between real and fake images



Generative adversarial network Wasserstein GANs

Generative adversarial network (GAN): a two-player game

How to evaluate whether generated images have a similar
distribution to the training set?

Key insight: Use another network to help evaluate it!

G network: try to fool D by generating realistic images

D network: try to distinguish between real and fake images



Generative adversarial network Wasserstein GANs

GAN training

The two objectives can be achieved by

min
Gθ

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

where discriminator network Dw is a binary classifier.

Train the two networks alternatively:

1: Training D network, i.e. maxDw{·}, makes Dw(x) close to 1
for real images and Dw(G(z)) close to 0 for fake images G(z)

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

2: Training G network, i.e. minGθ{·}, makes Dw(G(z)) close to
1, fooling D into thinking G(z) is real.

min
Gθ
{Ez∼P (z) [log(1−Dw(Gθ(z)))]}



Generative adversarial network Wasserstein GANs

GAN training

The two objectives can be achieved by

min
Gθ

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

where discriminator network Dw is a binary classifier.

Train the two networks alternatively:

1: Training D network, i.e. maxDw{·}, makes Dw(x) close to 1
for real images and Dw(G(z)) close to 0 for fake images G(z)

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

2: Training G network, i.e. minGθ{·}, makes Dw(G(z)) close to
1, fooling D into thinking G(z) is real.

min
Gθ
{Ez∼P (z) [log(1−Dw(Gθ(z)))]}



Generative adversarial network Wasserstein GANs

GAN training

The two objectives can be achieved by

min
Gθ

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

where discriminator network Dw is a binary classifier.

Train the two networks alternatively:

1: Training D network, i.e. maxDw{·}, makes Dw(x) close to 1
for real images and Dw(G(z)) close to 0 for fake images G(z)

max
Dw
{Ex∼Pr [logDw(x)] + Ez∼P (z) [log(1−Dw(Gθ(z)))]}

2: Training G network, i.e. minGθ{·}, makes Dw(G(z)) close to
1, fooling D into thinking G(z) is real.

min
Gθ
{Ez∼P (z) [log(1−Dw(Gθ(z)))]}



Generative adversarial network Wasserstein GANs

GAN training (cont’)

However, optimizing generator’s objective does not work well!

Figure: x-axis for D(G(z)) and y-axis for log(1−D(G(z)))



Generative adversarial network Wasserstein GANs

GAN training (cont’)

Instead, optimizing generator by

min
Gθ
{Ez∼P (z) [− log(Dw(Gθ(z)))]}

which also tries to fool discriminator, but now with higher
gradient signal for poor generator.



Generative adversarial network Wasserstein GANs

GAN implementation

Note: Dθd = Dw and Gθg = Gθ



Generative adversarial network Wasserstein GANs

GAN result

Generator (consisting of FC layers) generated realistic images

Generator does not simply remember training images

Yellow boxes: nearest training example of neighboring
generated sample

Figure from Goodfellow et al., “Generative adversarial nets”, NIPS, 2014



Generative adversarial network Wasserstein GANs

DCGAN: deep convolutional GAN

Generator is a ‘deconvolutional’ network

Discriminator is a convolutional network

It is not that easy to make DCGAN work!

Table here and figures in next 5 slides from Radford, Metz, Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks”, ICLR, 2016



Generative adversarial network Wasserstein GANs

DCGAN (cont’)

The generator’s structure



Generative adversarial network Wasserstein GANs

DCGAN result

Generated images are already realistic after one epoch training



Generative adversarial network Wasserstein GANs

DCGAN result (cont’)

Interpolations between random points in the latent (input)
space result in semantic changes in generated images



Generative adversarial network Wasserstein GANs

DCGAN result (cont’): interpretable vector arithmetic

In latent space:
mean smiling woman vector - mean neural woman vector + mean
neural man vector = mean smiling man vector!



Generative adversarial network Wasserstein GANs

DCGAN result (cont’): interpretable vector arithmetic

Similarly, women-with-glass images can be generated by
vector arithmetic in the latent space.



Generative adversarial network Wasserstein GANs

LSGAN: Least Square Generative Adversarial Networks

Uses least-square loss to relieve gradient vanishing issue.
Original GAN used (sigmoid) binary cross-entropy loss.

Tries to achieve the same objective as original GAN

Formulae here and figures in next slide from Mao, Li, Xie, Lau, Wang, Smolley, “Least squares generative
adversarial networks”, ICCV, 2017



Generative adversarial network Wasserstein GANs

LSGAN result

LSGAN generated good-quality (e.g., outdoor and indoor)
images

LSGAN is more stable than regular GAN, when batch
normalization is removed in generator.



Generative adversarial network Wasserstein GANs

Issues in GAN training

Unstable training: when Discriminator becomes perfect, loss
becomes zero, so gradient for Generator vanishes!

On the other hand, if Discriminator behave badly, Generator
would have bad feedback and cannot update well.

Mode collapse: generator generates realistic images, but with
low varieties

Lack of proper evaluation metric: do not know when to stop
training.

See theoretical proof behind the issues from Arjovsky, Bottou, “Towards principled methods for training generative
adversarial networks”, arXiv, 2017



Generative adversarial network Wasserstein GANs

Issues in GAN training

Unstable training: when Discriminator becomes perfect, loss
becomes zero, so gradient for Generator vanishes!
On the other hand, if Discriminator behave badly, Generator
would have bad feedback and cannot update well.

Mode collapse: generator generates realistic images, but with
low varieties

Lack of proper evaluation metric: do not know when to stop
training.

See theoretical proof behind the issues from Arjovsky, Bottou, “Towards principled methods for training generative
adversarial networks”, arXiv, 2017



Generative adversarial network Wasserstein GANs

Issues in GAN training

Unstable training: when Discriminator becomes perfect, loss
becomes zero, so gradient for Generator vanishes!
On the other hand, if Discriminator behave badly, Generator
would have bad feedback and cannot update well.

Mode collapse: generator generates realistic images, but with
low varieties

Lack of proper evaluation metric: do not know when to stop
training.

See theoretical proof behind the issues from Arjovsky, Bottou, “Towards principled methods for training generative
adversarial networks”, arXiv, 2017



Generative adversarial network Wasserstein GANs

Essentially,...

Generator is used to generate fake data whose distribution Pθ
approximates real but unknown data distribution Pr

Discriminator helps measures difference between Pr and Pθ
(using loss function of GAN based on discriminator’s output)

Any better way to measure difference between distributions?



Generative adversarial network Wasserstein GANs

Distance measurements between two distributions

Kullback-Leibler (KL) divergence

KL(Pr ‖ Pθ) =

∫
Pr(x) log (

Pr(x)

Pθ(x)
)dx

Jenson-Shannon (JS) divergence, with Pm = (Pr + Pθ)/2:

JS(Pr, Pθ) =
1

2
KL(Pr ‖ Pm) +

1

2
KL(Pθ ‖ Pm)

(GAN’s loss function with optimal D) = 2JS(Pr, Pθ)− 2 log 2

Earth Mover’s distance or Wasserstein distance:

W (Pr, Pθ) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ [‖x− y‖]

where Π(Pr, Pθ) is the set of all joint distributions whose
marginal distributions are Pr and Pθ.



Generative adversarial network Wasserstein GANs

Distance measurements between two distributions

Kullback-Leibler (KL) divergence

KL(Pr ‖ Pθ) =

∫
Pr(x) log (

Pr(x)

Pθ(x)
)dx

Jenson-Shannon (JS) divergence, with Pm = (Pr + Pθ)/2:

JS(Pr, Pθ) =
1

2
KL(Pr ‖ Pm) +

1

2
KL(Pθ ‖ Pm)

(GAN’s loss function with optimal D) = 2JS(Pr, Pθ)− 2 log 2

Earth Mover’s distance or Wasserstein distance:

W (Pr, Pθ) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ [‖x− y‖]

where Π(Pr, Pθ) is the set of all joint distributions whose
marginal distributions are Pr and Pθ.



Generative adversarial network Wasserstein GANs

Distance measurements between two distributions

Kullback-Leibler (KL) divergence

KL(Pr ‖ Pθ) =

∫
Pr(x) log (

Pr(x)

Pθ(x)
)dx

Jenson-Shannon (JS) divergence, with Pm = (Pr + Pθ)/2:

JS(Pr, Pθ) =
1

2
KL(Pr ‖ Pm) +

1

2
KL(Pθ ‖ Pm)

(GAN’s loss function with optimal D) = 2JS(Pr, Pθ)− 2 log 2

Earth Mover’s distance or Wasserstein distance:

W (Pr, Pθ) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ [‖x− y‖]

where Π(Pr, Pθ) is the set of all joint distributions whose
marginal distributions are Pr and Pθ.



Generative adversarial network Wasserstein GANs

Earth Mover’s Distance (EMD)

EMD is the minimal total amount of work it takes to
transform one heap into the other

‘work’: amount of moved earth in a chunk times the distance
moved

Figures from https://vincentherrmann.github.io/blog/wasserstein/



Generative adversarial network Wasserstein GANs

Earth Mover’s Distance (EMD)

EMD is the minimal total amount of work it takes to
transform one heap into the other

‘work’: amount of moved earth in a chunk times the distance
moved

Figures from https://vincentherrmann.github.io/blog/wasserstein/



Generative adversarial network Wasserstein GANs

EMD or Wasserstein distance

Example of measuring the distance between real distribution
P0 (i.e., Pr) and fake distribution Pθ



Generative adversarial network Wasserstein GANs

EMD or Wasserstein distance (cont’)

The gradient of JS and KL divergence (over θ) is always 0,
therefore failing to update θ.

Wasserstein distance is continuous and has non-zero gradient
almost everywhere

Therefore, JS and KL divergences are not good choices to
measure the distance between two distributions.



Generative adversarial network Wasserstein GANs

EMD or Wasserstein distance (cont’)

The gradient of JS and KL divergence (over θ) is always 0,
therefore failing to update θ.

Wasserstein distance is continuous and has non-zero gradient
almost everywhere

Therefore, JS and KL divergences are not good choices to
measure the distance between two distributions.



Generative adversarial network Wasserstein GANs

Wasserstein distance

It is intractable to compute Wasserstein distance exactly

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]

But it shows W is equivalent to

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

where ‖f‖L ≤ 1 means f is a 1-Lipschitz function.

Let dX and dY be distance functions on spaces X and Y . A
function f : X → Y is K-Lipschitz if for all x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

Intuitively: if x1, x2 are close, f(x1) and f(x2) are also close.



Generative adversarial network Wasserstein GANs

Wasserstein distance

It is intractable to compute Wasserstein distance exactly

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]

But it shows W is equivalent to

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

where ‖f‖L ≤ 1 means f is a 1-Lipschitz function.

Let dX and dY be distance functions on spaces X and Y . A
function f : X → Y is K-Lipschitz if for all x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

Intuitively: if x1, x2 are close, f(x1) and f(x2) are also close.



Generative adversarial network Wasserstein GANs

Wasserstein distance

It is intractable to compute Wasserstein distance exactly

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]

But it shows W is equivalent to

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

where ‖f‖L ≤ 1 means f is a 1-Lipschitz function.

Let dX and dY be distance functions on spaces X and Y . A
function f : X → Y is K-Lipschitz if for all x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2)

Intuitively: if x1, x2 are close, f(x1) and f(x2) are also close.



Generative adversarial network Wasserstein GANs

Wasserstein distance approximation

The supremum over 1-Lipschitz functions is still intractable

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

Suppose there are a parameterized function family {fw}w∈W
with parameter w and function fw being K-Lipschitz, then

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

≤ sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

= K ·W (Pr, Pθ)

Then W (Pr, Pθ) can be approximated by

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Note: K can be absorbed into learning rate during max.



Generative adversarial network Wasserstein GANs

Wasserstein distance approximation

The supremum over 1-Lipschitz functions is still intractable

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

Suppose there are a parameterized function family {fw}w∈W
with parameter w and function fw being K-Lipschitz, then

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

≤ sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

= K ·W (Pr, Pθ)

Then W (Pr, Pθ) can be approximated by

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Note: K can be absorbed into learning rate during max.



Generative adversarial network Wasserstein GANs

Wasserstein distance approximation

The supremum over 1-Lipschitz functions is still intractable

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

Suppose there are a parameterized function family {fw}w∈W
with parameter w and function fw being K-Lipschitz, then

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

≤ sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

= K ·W (Pr, Pθ)

Then W (Pr, Pθ) can be approximated by

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Note: K can be absorbed into learning rate during max.



Generative adversarial network Wasserstein GANs

Wasserstein distance approximation

The supremum over 1-Lipschitz functions is still intractable

W (Pr, Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

Suppose there are a parameterized function family {fw}w∈W
with parameter w and function fw being K-Lipschitz, then

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

≤ sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

= K ·W (Pr, Pθ)

Then W (Pr, Pθ) can be approximated by

max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Note: K can be absorbed into learning rate during max.



Generative adversarial network Wasserstein GANs

Wasserstein GAN

fw can be represented by a neural network, with parameter w

But: how to make sure fw is K-Lipschitz?

Answer: weight clamping! Clipping w to be within [−c, c]
after every update of w.

Go back to original objective: In order to train Generator gθ
such that the fake Pθ = gθ(Z) matches real Pr, we need a
distance measurement to estimate the difference between Pθ
and Pr. Here the distance measurement is Wasserstein
distance which can be approximately computed based on the
optimal fw, i.e., by optimizing a network work fw. We call
such a network fw ‘critic function’, corresponding to
Discriminator in original GAN.

Wasserstein GAN: generator + critic



Generative adversarial network Wasserstein GANs

Wasserstein GAN

fw can be represented by a neural network, with parameter w

But: how to make sure fw is K-Lipschitz?

Answer: weight clamping! Clipping w to be within [−c, c]
after every update of w.

Go back to original objective: In order to train Generator gθ
such that the fake Pθ = gθ(Z) matches real Pr, we need a
distance measurement to estimate the difference between Pθ
and Pr. Here the distance measurement is Wasserstein
distance which can be approximately computed based on the
optimal fw, i.e., by optimizing a network work fw. We call
such a network fw ‘critic function’, corresponding to
Discriminator in original GAN.

Wasserstein GAN: generator + critic



Generative adversarial network Wasserstein GANs

Wasserstein GAN

fw can be represented by a neural network, with parameter w

But: how to make sure fw is K-Lipschitz?

Answer: weight clamping! Clipping w to be within [−c, c]
after every update of w.

Go back to original objective: In order to train Generator gθ
such that the fake Pθ = gθ(Z) matches real Pr, we need a
distance measurement to estimate the difference between Pθ
and Pr. Here the distance measurement is Wasserstein
distance which can be approximately computed based on the
optimal fw, i.e., by optimizing a network work fw. We call
such a network fw ‘critic function’, corresponding to
Discriminator in original GAN.

Wasserstein GAN: generator + critic



Generative adversarial network Wasserstein GANs

Wasserstein GAN

fw can be represented by a neural network, with parameter w

But: how to make sure fw is K-Lipschitz?

Answer: weight clamping! Clipping w to be within [−c, c]
after every update of w.

Go back to original objective: In order to train Generator gθ
such that the fake Pθ = gθ(Z) matches real Pr, we need a
distance measurement to estimate the difference between Pθ
and Pr. Here the distance measurement is Wasserstein
distance which can be approximately computed based on the
optimal fw, i.e., by optimizing a network work fw. We call
such a network fw ‘critic function’, corresponding to
Discriminator in original GAN.

Wasserstein GAN: generator + critic



Generative adversarial network Wasserstein GANs

Wasserstein GAN

fw can be represented by a neural network, with parameter w

But: how to make sure fw is K-Lipschitz?

Answer: weight clamping! Clipping w to be within [−c, c]
after every update of w.

Go back to original objective: In order to train Generator gθ
such that the fake Pθ = gθ(Z) matches real Pr, we need a
distance measurement to estimate the difference between Pθ
and Pr. Here the distance measurement is Wasserstein
distance which can be approximately computed based on the
optimal fw, i.e., by optimizing a network work fw. We call
such a network fw ‘critic function’, corresponding to
Discriminator in original GAN.

Wasserstein GAN: generator + critic



Generative adversarial network Wasserstein GANs

Wasserstein GAN (cont’)

Once getting optimal fw (by training critic network with
maximization of Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]), then

W (Pr, Pθ) = Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Then update generator gθ (with fixed fw) by minimizing W

∇θW (Pr, Pθ) = ∇θ(Ex∼Pr [fw(x)]− Ez∼Z [fw(gθ(z))])

= −Ez∼Z [∇θfw(gθ(z))]

In summary, repeat the following steps to train WGAN:

Step 1: Fix generator gθ, compute approximation of W (Pr, Pθ) by
training fw, i.e., by maxw∈W Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Step 2: Fix ‘critic’ fw, update gθ with gradient −Ez∼Z [∇θfw(gθ(z))]
by sampling several z from uniform distribution Z.



Generative adversarial network Wasserstein GANs

Wasserstein GAN (cont’)

Once getting optimal fw (by training critic network with
maximization of Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]), then

W (Pr, Pθ) = Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Then update generator gθ (with fixed fw) by minimizing W

∇θW (Pr, Pθ) = ∇θ(Ex∼Pr [fw(x)]− Ez∼Z [fw(gθ(z))])

= −Ez∼Z [∇θfw(gθ(z))]

In summary, repeat the following steps to train WGAN:

Step 1: Fix generator gθ, compute approximation of W (Pr, Pθ) by
training fw, i.e., by maxw∈W Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Step 2: Fix ‘critic’ fw, update gθ with gradient −Ez∼Z [∇θfw(gθ(z))]
by sampling several z from uniform distribution Z.



Generative adversarial network Wasserstein GANs

Wasserstein GAN (cont’)

Once getting optimal fw (by training critic network with
maximization of Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]), then

W (Pr, Pθ) = Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Then update generator gθ (with fixed fw) by minimizing W

∇θW (Pr, Pθ) = ∇θ(Ex∼Pr [fw(x)]− Ez∼Z [fw(gθ(z))])

= −Ez∼Z [∇θfw(gθ(z))]

In summary, repeat the following steps to train WGAN:

Step 1: Fix generator gθ, compute approximation of W (Pr, Pθ) by
training fw, i.e., by maxw∈W Ex∼Pr [fw(x)]− Ex∼Pθ [fw(x)]

Step 2: Fix ‘critic’ fw, update gθ with gradient −Ez∼Z [∇θfw(gθ(z))]
by sampling several z from uniform distribution Z.



Generative adversarial network Wasserstein GANs

WGAN algorithm

Table here and figures in the next 4 slides from Arjovsky, Chintala, Bottou, “Wasserstein GAN”, arXiv, 2017



Generative adversarial network Wasserstein GANs

WGAN results

Wasserstein loss correlates well with image quality



Generative adversarial network Wasserstein GANs

WGAN results (cont’)

WGAN (top 2 rows; with same DCGAN structure) performs
well (if not better) compared to DCGAN (bottom 2 rows)



Generative adversarial network Wasserstein GANs

WGAN results (cont’)

WGAN (top 2 rows; with same DCGAN structure) still
performs well when removing batch normalization, but
DCGAN not (bottom 2 rows)



Generative adversarial network Wasserstein GANs

WGAN results (cont’)

WGAN (top 2 rows; with same MLP structure) reduce issue
of mode collapse, compared to original GAN (bottom 2 rows).



Generative adversarial network Wasserstein GANs

However, ...

Issues of weight clipping in WGAN:

makes critic fw within a small subset of K-Lipschitz functions.

causes gradient vanishing or exploding (Fig. left).

pushes weights to extremes of clipping range (Fig. right), in
turn causing gradient exploding and slow training.

Figures here and in the next 3 slides from Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, “Improved training of
Wasserstein GANs”, arXiv, 2017



Generative adversarial network Wasserstein GANs

WGAN-GP: GAN with gradient penalty

Alternative way to enforce Lipschitz constraint: a function is
1-Lipschitz if and only if it has gradients (over input variable)
with norm less or equal to 1.0 everywhere.

Critic loss (to be minimized)

L = −Ex∼Pr [fw(x)] + Ex̃∼Pθ [fw(x̃)] +

λEx̂∼Px̂
[
(‖∇x̂fw(x̂)‖2 − 1)2

]
where the last term is ‘gradient penalty’ term, and

ε ∼ U [0, 1], x ∼ Pr, x̃ ∈ Pθ
x̂ = εx+ (1− ε)x̃

considering optimal critic has gradient norm 1.0 on straight
lines connecting points from Pr to Pθ.

The improved WGAN is called WGAN-GP



Generative adversarial network Wasserstein GANs

WGAN-GP: GAN with gradient penalty

Alternative way to enforce Lipschitz constraint: a function is
1-Lipschitz if and only if it has gradients (over input variable)
with norm less or equal to 1.0 everywhere.

Critic loss (to be minimized)

L = −Ex∼Pr [fw(x)] + Ex̃∼Pθ [fw(x̃)] +

λEx̂∼Px̂
[
(‖∇x̂fw(x̂)‖2 − 1)2

]
where the last term is ‘gradient penalty’ term, and

ε ∼ U [0, 1], x ∼ Pr, x̃ ∈ Pθ
x̂ = εx+ (1− ε)x̃

considering optimal critic has gradient norm 1.0 on straight
lines connecting points from Pr to Pθ.

The improved WGAN is called WGAN-GP



Generative adversarial network Wasserstein GANs

WGAN-GP result

WGAN-GP improves training speed compared to WGAN

‘Inception score’ is used to measure image quality



Generative adversarial network Wasserstein GANs

WGAN-GP result

WGAN-GP successfully train difficult GAN architectures



Generative adversarial network Wasserstein GANs

Summary

GANs provide an effective way to generate data

GANs do not explicitly model data distribution

GAN training: unstable and mode collapse

WGAN: 1st attempt to improve GAN with theoretical proof

More GANs already proposed, more GANs to be proposed!

Further reading:

Miyato et al., Spectral normalization for generative adversarial
networks, ICLR, 2018

Dai et al., Good semi-supervised learning that requires a bad GAN,
arXiv, 2017


	Generative adversarial network
	Wasserstein GANs

