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@ What and why
© Encoder-decoder FCNs

© Deeplab models
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What and why

@ Semantic segmentation: classifying each pixel

@ Applications: self-driving, smart home
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What and why

@ More applications: intelligent medical analysis, etc.
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CNNs for semantic segmentation

How are CNNs applied to semantic segmentation?
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Traditional CNN-based classifiers

@ Classification of the whole image
Probability Class
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@ How can CNNs output classification result for each pixel?
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Traditional sliding window idea

@ Classify each pixel by classifying the surrounding patch

Classify center
Extract patch pixel with CNN

Figure from Stanford CS231n 2017 lecture 11
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Traditional sliding window idea

@ Classify each pixel by classifying the surrounding patch

Classify center
Extract patch pixel with CNN

@ Issue: very inefficient! 10000 patches for a 100 x 100 image

Figure from Stanford CS231n 2017 lecture 11
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Segmentation with fully convolutional idea

@ Output has same size as input, but with C (# class) channels

Conv Conv Conv

Y Scores:

CxHxW
Each channel xnx

HxW

Figure from Stanford CS231n 2017 lecture 11

argmax
—

Predictions:
HxW
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Segmentation with fully convolutional idea

@ Output has same size as input, but with C (# class) channels

Conv Conv Conv argmax
— — — —

Y Scores: Predictions:
CxHxW HxW

Each channel
HxW

@ Issue 1: expensive computation and large memory

@ Issue 2: difficult to capture larger receptive field

Figure from Stanford CS231n 2017 lecture 11
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Fully convolutional network (FCN)

@ Encoder-decoder framework: reduce size of feature maps,
then increase to original size

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4,

Low-res:
D,x H/4 x W/4

Input: High-res: High-res:

Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW
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Fully convolutional network (FCN)

@ Encoder-decoder framework: reduce size of feature maps,
then increase to original size

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4,

Low-res:
D,x H/4 x W/4

Input: High-res: High-res:

Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

@ But how to realize ‘upsampling’?

Figure from Stanford CS231n 2017 lecture 11
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SegNet: max unpooling as upsampling

Max Pooling
Remember which element was max!

1 2|16 3
3 5612 1 5 6
11221 7.8 Rest of the network
7 3|4 8
Input: 4 x 4 Output: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Max Unpooling
Use positions from
pooling layer

12
4
Input: 2 x 2

Figure from Stanford CS231n 2017 lecture 11;
Badrinarayanan, Kendall, Cipolla, “SegNet: a deep convolutional encoder-decoder architecture for image

segmentation”, arXiv, 2015

0 2

1 0

0|0

0/0 4
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Transpose convolution: learnable upsampling

@ Transpose convolution (‘deconvolution’): opposite convolution
@ Stride results in upsampling rather than downsampling

@ Padding means removing boundary from the output rather
than addding to the input

Figures from https://github.com/vdumoulin/conv_arithmetic
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Transpose convolution: learnable upsampling

@ Transpose convolution (‘deconvolution’): opposite convolution
@ Stride results in upsampling rather than downsampling

@ Padding means removing boundary from the output rather
than addding to the input

Output
(green)

InpUt < el - -

(blue) W ~ o
Stride =1 Stride =2 Stride =2
No padding No padding Padding =1

Figures from https://github.com/vdumoulin/conv_arithmetic
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FCNs with transpose convolution

FCN-32s

@ one transpose /A ——— " 7Cchannels

convolutional layer  0.5x
(line in red) Y
@ stride=32 0.5x
o kernel size 64 x 64 Cj
o C: number of 0.5x 32x
segmentation classes y A
[ 0.5%
.
l0.5x

C channels

Long, Shelhamer, Darrell, “Fully convolutional networks for semantic segmentation”, CVPR 2015
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FCNs with transpose convolution (cont’)

FCN-16s
@ two transPose cony . C channels
layers (stride=2, size 2x
4 x 4; stride=16, size 0-3x C channels
32 x 32) Y Ay e

A
C channels

0.5x

16x

4

C channels
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FCNs with transpose convolution (cont’)

FCN-16s

@ two transpose conv c
H : k channels
layers (stride=2, size ox
4 x 4; stride=16, size 0.5x C channels
32 x 32) Y Ay e

. t C channels
@ green line: 1 x 1 0.5x

convolution

16x

4

C channels
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FCNs with transpose convolution (cont’)

FCN-16s

@ two transpose conv
layers (stride=2, size t ox
4 x 4; stride=16, size 0.5x C channels
32 x 32) [ ()

A
C channels

C channels

@ green line: 1 x 1 0.5x
convolution

@ upsampled feature
map plus lower-layer
feature map

16x

@ dashed lines: identity
mapping

4

C channels
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FCNs with transpose convolution (cont’)

FCN-8s
@ three transpose conv : C channels
layers 2%
. . 0.5x C channels
@ two with stride=2,
kernel size 4 x 4 L
C channels 2X
@ one with stride=8, 0-5x Cchannels

kernel size 16 x 16 --
0.5x Cchannels

C channels
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FCNs with transpose convolution (cont')

@ Training FCN as for CNN classifier
FCN-32s FCN-16s FCN-8s Ground truth

vb vx v
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FCNs with transpose convolution (cont')

@ Training FCN as for CNN classifier
FCN-32s FCN-16s FCN-8s Ground truth

huki

@ Better if more lower encoding layers involved in upsampling

@ So, why not use further more encoding layers during
upsampling?
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U-net: using more encoding layers during upsampling

input

image |»|»! output

segmentation
map

392 x 392
388 x 388 '

572 x 572
570 x 570
568 x 568

' 128 128

2842
282
1982

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1
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U-net (cont’)

Different from above FCN model:
@ Each upsampling layer contains more kernels (than class #)

input

image a|s output

segmentation
map

,H’H’D Q’Dﬂ =>conv 3x3, ReLU

+ copy and crop
I-- [ - # max pool 2x2
+ 4 4 up-conv 2x2
= conv 1x1
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U-net (cont’)

Different from above FCN model:
@ Each upsampling layer contains more kernels (than class #)
@ Encoding block connects to corresponding decoding block

input

image a|s N output

segmentation
map

+

i r'
4 I

H t
H’W’D D’Dﬂ = conv 3x3, ReLU
B t copy and crop
I-- [ielmem # max pool 2x2
} + 4 up-conv 22

- > - conv 1x1
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U-net (cont’)

Different from above FCN model:
@ Each upsampling layer contains more kernels (than class #)
@ Encoding block connects to corresponding decoding block

@ Upsampled feature maps concatenate with corresponding
encoding feature maps

input

image w/» N e

segmentation

+

i 1:
4 I

- 1
[’—H] | I’D’{ = conv 3x3, ReLU
B + t copy and crop
-~ | e e § max pool 2x2
(] L] 4 up-conv 22
> > —

= conv 1x1

Figure from Ronneberger, Fischer, Brox, “U-Net: convolutional networks for biomedical image segmentation”,
MICCAI, 2015
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U-net (cont’)

@ U-net has been used for various medical image segmentations,
with good performance; yellow borders for ground-truth
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However ...

@ FCNs did not effectively use global scene category clues

—
R

®
o

2|8 2|8
&l S o=
M &
5

(a) Image (b) Ground Truth (c) FCN (d) PSPNet (e) ColorMap

@ Errors relate to contextual relationship and global information
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Pyramid scene parsing network (PSPNet)

PSPNet: use pyramid pooling to provide global context infor
@ Encoder: dilated conv, feature map with 1/8 size of input

@ Then pyramid pooling: pooling at multiple scales
Spatial size of pooling ouput (not pooling window) is pre-set

@ Concatenate upsampling result with original feature map

_feonv- -_—
\ 1 CONCAT
A q

Figure from Zhao, Shi, Qi, Wang, Jia, “Pyramid scene parsing network”, CVPR, 2017

- &= oD

- [Pooi]—
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PSPNet (cont’)

@ Average segmentation results from multiple scales of input
@ PSPNet produces more accurate and detailed results

a) Im.aget (b) Ground Truth  (c) Baseline (d) PSPNet
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PSPNet (cont’)

@ PSPNet won multiple challenges/contests in 2016

(a) Image (b) Ground Truth (c) PSPNet




Encoder-decoder FCNs
000000000000000000e800

Global convolutional network (GCN): large kernel matters

@ Another way to capture global context: large kernels
o Kernel size in GCN: 1 x K and K x 1, eg., K =17

Image Score Map wxhxc
—————— BR ' v ;
Convolution Convolution
kx1xecx21 1xkxex21

i

Deconv l l‘
512x512x 21 Convolution Convolution
1xkx21x21 kx1x21x21
conv-1
256 x 256 x 64 \—;—,

Ground Truth Prediction T S;f" »
wXxhx

- GCN BR + BR Deconv |
128 x 128 x 256 128 x 128 x 21 256 x 256 x 21

!

B. Global Convolutional Network

\ hx21
res-3 GCN e " 5 Deconv W
64x64x512 7 64x64x21 [ — — 128 x 128 x 21
l - : Conv + ReLU
3x3x21x21
res-4 GCN s e Deconv
32x32x1024 7 32x32x21 [ Lt 1 eax6ax21 Convolution
l - o 3x3x21x21
res-5 GCN Deconv Sun
16x16x2048 | 16x16x21 | > PR ] 32x32x21 wxhx21
) (2xsExa )

A. Whole Pipeline C. Boundary Refinement
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GCN (cont’)

@ Like FCN-8s: connect encoder and decoder layers
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GCN (cont’)

Like FCN-8s: connect encoder and decoder layers

Not like FCN-8s: add GCN and ‘boundary refinement’ (BR)
layers between connections, and across de-conv layers

BR layers help segment more accurate region boundaries

Large kernels help handle large-scale object regions

Figure from Peng, Zhang, Yu, Luo, Sun, “Large kernel matters - improve semantic segmentation by global
convolutional network”, CVPR, 2017



GCN (cont’)

Encoder-decoder FCNs
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@ Intersection-over-union (loU) on PASCAL VOC 2012

@ Performance is better with larger kernel size

k

base

3

5

7

9

11

13

15

Score

69.0

70.1

71.1

72.8

73.4

73.7

74.0

74.5
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GCN (cont’)

@ Intersection-over-union (loU) on PASCAL VOC 2012

@ Performance is better with larger kernel size

k base 3 5 7 9 11 13 15
Score | 69.0 | 70.1 | 71.1 | 72.8 | 73.4 | 73.7 | 74.0 | 74.5

@ GCN is better than equivalent stacked multi-layer small kernels

k 3 5 7 9 11
Score (GCN) | 70.1 | 71.1 | 72.8 | 73.4 | 73.7
Score (Stack) | 69.8 | 71.8 | 71.3 | 69.5 | 67.5
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GCN (cont’)

Intersection-over-union (loU) on PASCAL VOC 2012

Performance is better with larger kernel size

k base 3 5 7 9 11 13 15
Score | 69.0 | 70.1 | 71.1 | 72.8 | 73.4 | 73.7 | 74.0 | 74.5

@ GCN is better than equivalent stacked multi-layer small kernels

k 3 5 7 9 11
Score (GCN) | 70.1 | 71.1 | 72.8 | 73.4 | 73.7
Score (Stack) | 69.8 | 71.8 | 71.3 | 69.5 | 67.5

@ BR improve boundary region segmentation (1st column)

Model Boundary (acc.) | Internal (acc. ) | Overall (IoU)
Baseline 71.3 93.9 69.0
GCN 71.5 95.0 74.5
GCN + BR 73.4 95.1 74.7
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We have seen several encoder-decoder models!

Is only encoder-decoder effective for segmentation?
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Dilated (atrous) convolution: upsampling filters

@ Feature map size unchanged across layers

@ Capture large-scale features on high-resolution maps

Rate=1 Rate=2 Rate=3
............... 1
""""" . | -

. [ | HE EE N
.......... | ||
............ AR mim
I
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Dilated (atrous) convolution: upsampling filters

@ Feature map size unchanged across layers

@ Capture large-scale features on high-resolution maps

Rate=1 Rate=2 Rate=3
............... I
| -
'Iﬁ.ilﬁ | o B | HE EE N
[
............ AR mim
I

@ But more memory assumption due to large-size feature maps
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Deeplab

1: Conv+pooling to reduce feature map size to 1/16 of input

= 4V
=
L 7 L

Image Image
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Deeplab

1: Conv+pooling to reduce feature map size to 1/16 of input
2: Followed by multilayer dilated convolutions

= amunrg
g
L 7 L

Image Image
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Deeplab

1: Conv+pooling to reduce feature map size to 1/16 of input
2: Followed by multilayer dilated convolutions
3: With bilinear interpolation as upsampling to input size

= amunrg
g
L 7 L

Image Image
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Deeplab

. Conv+pooling to reduce feature map size to 1/16 of input
. Followed by multilayer dilated convolutions
: With bilinear interpolation as upsampling to input size

O R S

. Post-processing with fully connected conditional random field

= amunrg
g
L 7 L

Image Image
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DeeplLab V2

@ Fuse multiple paths of dilated convolutions of different rates

= = z— Z—7
Spatial Pyramid Pooling
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DeeplLab V2

@ Fuse multiple paths of dilated convolutions of different rates

/—%

= = z— Z—7
Spatial Pyramid Pooling

Image
@ It can capture objects and context at multiple scales
@ Tricks: multi-scale inputs, ResNet, augmentaiton, pre-training

Figure from Chen, Papandreou, Kokkinos, Murphy, Yuille, “DeepLab: semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected CRFs", arXiv, 2017
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@ Some of mentioned model structures above

Image Scale 1 Image Scale 2
Multi-scale
input

Image

Encoder-decoder
(e.g., U-net)

Small Resolution
=

: i
= A7
= Lz

Image Image

Deeplab V1

e
—

L[=T7 (=7,
Spatial Pyramid Pooling

!
!

Image

Deeplab V2

Figures here and next slide from Chen, Papandreou, Schroff, Adam, “Rethinking atrous convolution for semantic
image segmentation”, arXiv, 2017
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@ Some of mentioned model structures above

Image Scale 1 Image Scale 2

Multi-scale
input

Image

Encoder-decoder
(e.g., U-net)

Small R:esclumn E
t t
= A=
? Comgution
] !
Image Image
Deeplab V1

e
—

L[=T7 (=7,
Spatial Pyramid Pooling

!
!

Image

Deeplab V2

@ Issue of DeeplLab V2: for large dilation, sampling at map
boundary is not useful, i.e., image-scale features not well

captured

Figures here and next slide from Chen, Papandreou, Schroff, Adam, “Rethinking atrous convolution for semantic
image segmentation”, arXiv, 2017
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DeeplLab V3

e Capture image-scale features with global pooling (green)

(a) Atrous Spatial
Pyramid Pooling

= 1x1Conv
Convl - 3x3 Conv
+V rate=2 EB rate=6 Coicat
Poolt Block Block2 Blocka Block4 3x3 Conv | 1x1 Conv
rate=12 —_—
M
output 3x3 Conv
Image stride 4 8 16 16 rate=18 16
(b) Image Pooling

@ More tricks: batch normalization, bootstrapping hard images
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DeeplLab V3-+

@ Deeplab V3 capture multi-scale context infor with dilated
convolutions at multiple rates

@ Encoder-decoder models capture sharper object boundaries by
gradually recovering spatial information

@ So why not combine the two worlds?

= —

X IU.SX le —
L[ET [T (=7 (727 ?5 T SgatalPyrami Pooing
5% x i)
Spatial Pyramid Pooling — jl — ax
— " fosx
P d Jos |~ =
tosx 8x LT — L7 tosx
q IO.SX lzx LT —L 7
0.5x fosx
S 7 Sl S S 7 ax
to.sx To 5x l x fosx
Image Prediction Image Prediction image Prediction
Deeplab V2/Vv3 Encoder-decoder Deeplab V3+

Figures here and next few slides from Chen, Zhu, Papandreou, Schroff, Adam, “Encoder-decoder with atrous
separable convolution for semantic image segmentation”, arXiv, 2018
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DeeplLab V3+

@ Deeplab V3+: adding decoder to Deeplab V3

“Encoder
@xaConv) —[| ]
3x3 Conv
co oo | (]
Atrous Conv
o | | ) -
3x3 Conv l
rate 18 | >
Image ﬁ
Pooling | —™>
“Decoder
Upsample
Low-Level by 4
Features

Prediction

1x1 Conv| —» ﬁ_» _,@_, Upts)arzple i
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DeeplLab V3+

@ Deeplab V3+: adding decoder to Deeplab V3
@ Feature maps are concatenated in decoder

“Encoder
@xaConv) —[| ]
3x3 Conv
co oo | (]
Atrous Conv
s | | ) e
3x3 Conv l
rate 18 | >
Image ﬁ
Pooling | —™
“Decoder
Upsample
Low-Level by 4

Features

1x1 Conv| —» ﬁ_» _,@_, Upts)argple i

Prediction
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State-of-the-art segmentation results

@ Deeplab V3+ is the best so far, on PASCAL VOC 2012

Method | mIOU
Deep Layer Cascade (LC) [42] 82.7
TuSimple [75] 83.1
Large_Kernel Matters [57] 83.6
Multipath-RefineNet [43] 84.2
ResNet-38_MS_COCO [77] 84.9
PSPNet [81] 85.4
IDW-CNN [73] 86.3
CASIA_IVA_SDN [20] 86.6
DIS [50] 86.8
DeepLabv3 [10] 85.7
DeepLabv3-JFT [10] 86.9
DeepLabv3+ (Xception) 87.8
DeepLabv3+ (Xception-JFT) 89.0
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What could be the next breakthrough?
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MS-D: Mixed-scale dilate conv with dense connections

@ Dense connection, concatenation of feature maps

Layer 1 Layer 2 Layer 3
(2 channels) (2 channels) (2 channels)

[

Feature map
channel

3x3 dilated
convolution

1x1 convolution
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MS-D: Mixed-scale dilate conv with dense connections

@ Dense connection, concatenation of feature maps

@ Unique dilation rate for each channel per layer

<

Layer 1 Layer 2 Layer 3
(2 channels) (2 channels) (2 channels)

[

Feature map
channel

3x3 dilated
convolution

1x1 convolution
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MS-D: Mixed-scale dilate conv with dense connections

@ Dense connection, concatenation of feature maps
@ Unique dilation rate for each channel per layer

@ Number of feature channels per layer can be just 2 or 1

> D Feature map

channel

3x3 dilated
convolution

[ 1 — 1x1 convolution

Layer 1 Layer 2 Layer 3
(2 channels) (2 channels) (2 channels)

Figure from Pelt, Sethian, “A mixed-scale dense convolutional neural network for image analysis”, PNAS, 2017
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MS-D network (cont’)

@ Fewer parameters: few kernels + feature reuse

@ Therefore, work well with small training dataset
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MS-D network (cont’)

@ Fewer parameters: few kernels + feature reuse
@ Therefore, work well with small training dataset

o Cell segmentation, with 100 layers, 1 channel per layer

o figure (b): ground truth; (c) segmentation by model
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AutoML for segmentation

@ Automatically search for model architectures
@ Same performance as DeeplLab V3+, but faster

Note: ‘atr’: atrous conv; ‘sep’: depthwise-separable conv.

Figure from Liu, Chen, Schroff, Adam, Hua, Yuille, Fei-Fei, "Auto-DeeplLab: Hierarchical Neural Architecture
Search for Semantic Image Segmentation”, arXiv, 2019
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Summary

Further reading:

FCNs are better than others for semantic segmentation
Encoder-decoder FCN variations were developed
DeeplLab V34 combine dilated conv with decoder

New trends:dense connection, multi-scale, autoML, etc.

@ Luo et al., Deep dual learning for semantic image segmentation,
ICCV, 2017

@ Liu et al., Auto-DeeplLab: Hierarchical Neural Architecture Search
for Semantic Image Segmentation’, arXiv, 2019
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