
More CNN models CNN applications

Week 5: Convolutional Neural Networks - 2

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

28 March, 2019



More CNN models CNN applications

1 More CNN models

2 CNN applications



More CNN models CNN applications

From ResNets to DenseNets

DenseNet: connect all layers directly with each other

Differ from Resnet: not sum, but concatenate feature maps

Encourages feature reuse throughout the network

Can ensure maximum information flow between layers
figure from Huang, Liu, van der Maaten, Weinberger, “Densely connected convolutional networks”, CVPR 2017



More CNN models CNN applications

DenseNets

Use transition layers to change size of feature maps

Training: easily back-propagate errors via skip connections

Each layer can have fewer (e.g., 12) kernels, and still sufficient
to obtain state-of-the-art results

Reason: each layer has access to all preceding feature-maps in
its block, and therefore to the network’s ‘collective knowledge’



More CNN models CNN applications

DenseNets

Use transition layers to change size of feature maps

Training: easily back-propagate errors via skip connections

Each layer can have fewer (e.g., 12) kernels, and still sufficient
to obtain state-of-the-art results

Reason: each layer has access to all preceding feature-maps in
its block, and therefore to the network’s ‘collective knowledge’



More CNN models CNN applications

DenseNets

Use transition layers to change size of feature maps

Training: easily back-propagate errors via skip connections

Each layer can have fewer (e.g., 12) kernels, and still sufficient
to obtain state-of-the-art results

Reason: each layer has access to all preceding feature-maps in
its block, and therefore to the network’s ‘collective knowledge’



More CNN models CNN applications

DenseNets (cont’)

Tens of conv layers per dense block

Use 1× 1 conv layer to reduce number of feature maps



More CNN models CNN applications

DenseNets (cont’)

Fewer parameters (and computation) for similar performance

Less prone to overfitting (due to fewer parameters)



More CNN models CNN applications

More ResNet variations

Sometimes, we may think differently for innovation!

How about not making network deeper, but wider?



More CNN models CNN applications

More ResNet variations

Sometimes, we may think differently for innovation!

How about not making network deeper, but wider?



More CNN models CNN applications

Wide ResNet

Wide Resnet: more kernels in each layer, with fewer layers
figure from Zagoruyko, Komodakis, “Wide residual networks”, BMVC 2016



More CNN models CNN applications

Wide ResNet (cont’)

‘WRN-28-10’: 28 conv layers, 10 times original kernel number

Widening improves performance

So, ResNet works not due to extreme depth: ‘skip connection’



More CNN models CNN applications

Wide ResNet (cont’)

‘WRN-28-10’: 28 conv layers, 10 times original kernel number

Widening improves performance

So, ResNet works not due to extreme depth: ‘skip connection’



More CNN models CNN applications

More ResNet variations

Besides deeper and wider networks ...



More CNN models CNN applications

ResNeXt: besides deeper and wider

ResNeXt: divide ResNet block into smaller transformations,
then aggregate.

Left: ResNet block; Right:ResNeXt block with cardinality 32

Each layer: (# input channels, filter size, # output channels)

Two blocks have similar number of parameters
Figures and tables from Xie, Girshick, Dollar, Tu, He, “Aggregated residual transformations for deep neural

networks”, CVPR 2017



More CNN models CNN applications

ResNeXt (cont’)

Comparison on ImageNet-1K dataset

ResNeXt performs better than ResNet, with similar complexity

Lower training error indicates more powerful feature learning



More CNN models CNN applications

ResNeXt (cont’)

Comparison on ImageNet-1K dataset

Increasing cardinality is better than increasing depth and width



More CNN models CNN applications

ResNeXt (cont’)

Comparison on ImageNet-1K dataset

Increasing cardinality is better than increasing depth and width



More CNN models CNN applications

ResNeXt (cont’)

Comparison on CIFAR-10 dataset

Again: increasing cardinality is more effective than width



More CNN models CNN applications

SENet: Squeeze-and-Excitation Networks

model channel dependencies

control channel excitation

plug-in operator

SENet = SE-ResNeXt152

won 2017 ImageNet contest,
with 2.25% top-5 error

Figures from Hu, Shen, Sun, “Squeeze-and-Excitation
Networks”, CVPR 2018



More CNN models CNN applications

PNASNet: progressive neural architecture search

All model architectures above are designed by humans.
Recently: AutoML techniques for neural architecture search

Note: ‘sep’ for ‘depthwise separable convolution’
PNASNet outperforms almost all hand-crafted models

Figures from Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, Murphy, “Progressive Neural
Architecture Search”, ECCV 2018



More CNN models CNN applications

Before Next...Group Normalization

Batch normalization not work well for small batch size

Group normalization (GN): divide channels into groups, then
normalize within each group; works for single data.

Note (in rightmost figure): 2 groups, 3 channels per group

Layer Norm (LN) and Instance Norm (IN) are special GNs

LN and IN not work well for visual recognition tasks

Figure from Wu, He, “Group normalization”, ECCV 2018



More CNN models CNN applications

Before Next...Group Normalization

Batch normalization not work well for small batch size

Group normalization (GN): divide channels into groups, then
normalize within each group; works for single data.

Note (in rightmost figure): 2 groups, 3 channels per group

Layer Norm (LN) and Instance Norm (IN) are special GNs

LN and IN not work well for visual recognition tasks

Figure from Wu, He, “Group normalization”, ECCV 2018



More CNN models CNN applications

Next...

Let’s see a few applications of CNN models!



More CNN models CNN applications

Face verification or identification

How do you recognize whose face it is?

Probably: compare this face with many familiar faces in brain



More CNN models CNN applications

Face verification or identification

How do you recognize whose face it is?

Probably: compare this face with many familiar faces in brain



More CNN models CNN applications

Face verification (cont’)

Consider it as an image classification problem?

Issue 1: not comparing face similarity/distance directly

Issue 2: too many parameters to learn
e.g. for last layer: 100 features * 1,000,000 classes

Issue 3: difficult to collect many faces per person

Instead: FaceNet



More CNN models CNN applications

Face verification (cont’)

Consider it as an image classification problem?

Issue 1: not comparing face similarity/distance directly

Issue 2: too many parameters to learn
e.g. for last layer: 100 features * 1,000,000 classes

Issue 3: difficult to collect many faces per person

Instead: FaceNet



More CNN models CNN applications

Face verification (cont’)

Consider it as an image classification problem?

Issue 1: not comparing face similarity/distance directly

Issue 2: too many parameters to learn
e.g. for last layer: 100 features * 1,000,000 classes

Issue 3: difficult to collect many faces per person

Instead: FaceNet



More CNN models CNN applications

FaceNet for face verification

FaceNet: a convolutoinal network to transform images into a
low-dimensional (i.e., 128) feature space in which face images
of same identity are closer than images of different identities.

‘anchor’ and ‘positive’ images have same identity

‘anchor’ and ‘negative’ images have different identity

Figure here and evaluation results below from Schroff, Kalenichenko, Philbin, “FaceNet: a unified
embedding for face recognition and clustering”, CVPR 2015



More CNN models CNN applications

FaceNet for face verification

FaceNet: a convolutoinal network to transform images into a
low-dimensional (i.e., 128) feature space in which face images
of same identity are closer than images of different identities.

‘anchor’ and ‘positive’ images have same identity

‘anchor’ and ‘negative’ images have different identity

Figure here and evaluation results below from Schroff, Kalenichenko, Philbin, “FaceNet: a unified
embedding for face recognition and clustering”, CVPR 2015



More CNN models CNN applications

Triplet loss for FaceNet

To ensure that an image xa
i (anchor) is closer to every other

images xp
i (positive) of the same person than to any image xn

i

of any other person, we hope

‖f(xa
i )− f(xp

i )‖
2 + α < ‖f(xa

i )− f(xn
i )‖2

∀ (xa
i ,x

p
i ,x

n
i ) ∈ T

T : training triplets {(xa
i ,x

p
i ,x

n
i )}Ni=1; α: positive constant

f(·): feature representation of input via CNN model

So, the loss over one triplet (xa
i ,x

p
i ,x

n
i ) can be designed as

l(xa
i ,x

p
i ,x

n
i ) =


0,

if ‖f(xa
i )− f(xp

i )‖2 + α < ‖f(xa
i )− f(xn

i )‖2

‖f(xa
i )− f(xp

i )‖2 + α− ‖f(xa
i )− f(xn

i )‖2,
if ‖f(xa

i )− f(xp
i )‖2 + α ≥ ‖f(xa

i )− f(xn
i )‖2



More CNN models CNN applications

Triplet loss for FaceNet

To ensure that an image xa
i (anchor) is closer to every other

images xp
i (positive) of the same person than to any image xn

i

of any other person, we hope

‖f(xa
i )− f(xp

i )‖
2 + α < ‖f(xa

i )− f(xn
i )‖2

∀ (xa
i ,x

p
i ,x

n
i ) ∈ T

T : training triplets {(xa
i ,x

p
i ,x

n
i )}Ni=1; α: positive constant

f(·): feature representation of input via CNN model

So, the loss over one triplet (xa
i ,x

p
i ,x

n
i ) can be designed as

l(xa
i ,x

p
i ,x

n
i ) =


0,

if ‖f(xa
i )− f(xp

i )‖2 + α < ‖f(xa
i )− f(xn

i )‖2

‖f(xa
i )− f(xp

i )‖2 + α− ‖f(xa
i )− f(xn

i )‖2,
if ‖f(xa

i )− f(xp
i )‖2 + α ≥ ‖f(xa

i )− f(xn
i )‖2



More CNN models CNN applications

Triplet loss for FaceNet (cont’)

The above loss can be abbreviated as

l(xa
i ,x

p
i ,x

n
i ) =

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

Triplet loss: on the whole training dataset

L(θ) =

N∑
i=1

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

θ: model parameters

Output of FaceNet is not a class label or probability, but a
128-dim feature vector f(x)



More CNN models CNN applications

Triplet loss for FaceNet (cont’)

The above loss can be abbreviated as

l(xa
i ,x

p
i ,x

n
i ) =

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

Triplet loss: on the whole training dataset

L(θ) =

N∑
i=1

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

θ: model parameters

Output of FaceNet is not a class label or probability, but a
128-dim feature vector f(x)



More CNN models CNN applications

Triplet loss for FaceNet (cont’)

The above loss can be abbreviated as

l(xa
i ,x

p
i ,x

n
i ) =

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

Triplet loss: on the whole training dataset

L(θ) =

N∑
i=1

[
‖f(xa

i )− f(xp
i )‖

2 + α− ‖f(xa
i )− f(xn

i )‖2
]
+

θ: model parameters

Output of FaceNet is not a class label or probability, but a
128-dim feature vector f(x)



More CNN models CNN applications

FaceNet: evaluation

Training set generation: select ‘hard’ triplets which have
larger triplet loss!

CNN models: VGG-like or GoogleNet, 15 ∼ 22 layers

LFW dataset: Labelled Faces in the Wild
13233 images; 5749 people; 1680 people with ≥ 2 images

In training: used other labelled data set.

Verification rule: given two face images xi and xj , if
‖f(xi)− f(xj)‖2 < τ , then xi and xj are considered ‘same’.

Threshold τ = 1.24 ∼ 1.26 was experimentally decided

Verification accuracy: 99.63%± 0.09%, better than humans!



More CNN models CNN applications

FaceNet: evaluation

Training set generation: select ‘hard’ triplets which have
larger triplet loss!

CNN models: VGG-like or GoogleNet, 15 ∼ 22 layers

LFW dataset: Labelled Faces in the Wild
13233 images; 5749 people; 1680 people with ≥ 2 images

In training: used other labelled data set.

Verification rule: given two face images xi and xj , if
‖f(xi)− f(xj)‖2 < τ , then xi and xj are considered ‘same’.

Threshold τ = 1.24 ∼ 1.26 was experimentally decided

Verification accuracy: 99.63%± 0.09%, better than humans!



More CNN models CNN applications

FaceNet: evaluation

Training set generation: select ‘hard’ triplets which have
larger triplet loss!

CNN models: VGG-like or GoogleNet, 15 ∼ 22 layers

LFW dataset: Labelled Faces in the Wild
13233 images; 5749 people; 1680 people with ≥ 2 images

In training: used other labelled data set.

Verification rule: given two face images xi and xj , if
‖f(xi)− f(xj)‖2 < τ , then xi and xj are considered ‘same’.

Threshold τ = 1.24 ∼ 1.26 was experimentally decided

Verification accuracy: 99.63%± 0.09%, better than humans!



More CNN models CNN applications

FaceNet: evaluation

Training set generation: select ‘hard’ triplets which have
larger triplet loss!

CNN models: VGG-like or GoogleNet, 15 ∼ 22 layers

LFW dataset: Labelled Faces in the Wild
13233 images; 5749 people; 1680 people with ≥ 2 images

In training: used other labelled data set.

Verification rule: given two face images xi and xj , if
‖f(xi)− f(xj)‖2 < τ , then xi and xj are considered ‘same’.

Threshold τ = 1.24 ∼ 1.26 was experimentally decided

Verification accuracy: 99.63%± 0.09%, better than humans!



More CNN models CNN applications

FaceNet: evaluation (cont’)

Do you think each pair is from same person?



More CNN models CNN applications

FaceNet: evaluation (cont’)

Do you think each pair is from same person?

Each pair is from different persons

previous page: each pair from same person

These pairs are ALL the mistakes made by FaceNet!



More CNN models CNN applications

FaceNet: evaluation (cont’)

Do you think each pair is from same person?

Each pair is from different persons

previous page: each pair from same person

These pairs are ALL the mistakes made by FaceNet!



More CNN models CNN applications

FaceNet: evaluation (cont’)

Do you think each pair is from same person?

Each pair is from different persons

previous page: each pair from same person

These pairs are ALL the mistakes made by FaceNet!



More CNN models CNN applications

Style transfer

Generate a new image x which has style of image a and
content of image p

Pictures from https://harishnarayanan.org/writing/artistic-style-transfer/



More CNN models CNN applications

Style transfer: loss function

Idea: design and minimize a loss function

L(x;a,p,θ) = Lcontent(p,x) + λLstyle(a,x)

such that

To be optimized is not CNN parameters, but input image x

How is CNN model applied here?



More CNN models CNN applications

Style transfer: loss function

Idea: design and minimize a loss function

L(x;a,p,θ) = Lcontent(p,x) + λLstyle(a,x)

such that

To be optimized is not CNN parameters, but input image x

How is CNN model applied here?



More CNN models CNN applications

Style transfer: loss function

Idea: design and minimize a loss function

L(x;a,p,θ) = Lcontent(p,x) + λLstyle(a,x)

such that

To be optimized is not CNN parameters, but input image x

How is CNN model applied here?



More CNN models CNN applications

Style transfer: loss function (cont’)

Similar content: feature maps from conv layers should be
similar between x and p
Similar style: textures in feature maps should be similar
between x and a



More CNN models CNN applications

Style transfer: loss function (cont’)

Similar content: feature maps from conv layers should be
similar between x and p
Similar style: textures in feature maps should be similar
between x and a



More CNN models CNN applications

Style transfer: loss function (cont’)

Content loss: measured by difference in feature matrix

Lcontent(p,x) =
∑
i,j

(F l
ij − P l

ij)
2

where F l
ij is the activation of the i-th filter at position j in

layer l for CNN input x; similarly P l
ij for input p.

Style loss: measured by difference in gram matrix

El =
∑
i,j

(Gl
ij −Al

ij)
2

Lstyle(a,x) =
∑
l

wlEl

where Gl and Al are gram matrices corresponding to input x
and p, respectively; wl is weighting factor.



More CNN models CNN applications

Style transfer: loss function (cont’)

Content loss: measured by difference in feature matrix

Lcontent(p,x) =
∑
i,j

(F l
ij − P l

ij)
2

where F l
ij is the activation of the i-th filter at position j in

layer l for CNN input x; similarly P l
ij for input p.

Style loss: measured by difference in gram matrix

El =
∑
i,j

(Gl
ij −Al

ij)
2

Lstyle(a,x) =
∑
l

wlEl

where Gl and Al are gram matrices corresponding to input x
and p, respectively; wl is weighting factor.



More CNN models CNN applications

Style transfer: evaluation

Match content on VGG layer ‘conv4 2’ and style on layers
‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’



More CNN models CNN applications

Style transfer: evaluation

Can easily adjust the trade-off between content and style

Figures from Gatys, Ecker, Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016



More CNN models CNN applications

Style transfer: evaluation

Lower-layer content matching kept more fine structures



More CNN models CNN applications

Style transfer: evaluation

Style can be transferred from one photo to another



More CNN models CNN applications

Text classification

Objective: classification of sentences or paragraph into one of
predefined categories.

E.g., sentiment analysis, news categorization

Figures and tables from Conneau, Schwenk, Le Cun, Barrault, “Very deep convolutional networks for text
classification”, arXiv 2017



More CNN models CNN applications

Text classification: data representation

Every text (sentences/paragraphs) consists of (truncated or
padded) 1014 characters

A unique 16-dimensional vector to represent each character.

So, input to CNN is a 16× 1014 matrix
Or: 16 channels, ‘image’ of size 1× 1014 per channel

Different from images: 1-dimensional ‘image’ or feature maps



More CNN models CNN applications

Text classification: data representation

Every text (sentences/paragraphs) consists of (truncated or
padded) 1014 characters

A unique 16-dimensional vector to represent each character.

So, input to CNN is a 16× 1014 matrix
Or: 16 channels, ‘image’ of size 1× 1014 per channel

Different from images: 1-dimensional ‘image’ or feature maps



More CNN models CNN applications

Text classification: data representation

Every text (sentences/paragraphs) consists of (truncated or
padded) 1014 characters

A unique 16-dimensional vector to represent each character.

So, input to CNN is a 16× 1014 matrix
Or: 16 channels, ‘image’ of size 1× 1014 per channel

Different from images: 1-dimensional ‘image’ or feature maps



More CNN models CNN applications

Text classification: data representation

Every text (sentences/paragraphs) consists of (truncated or
padded) 1014 characters

A unique 16-dimensional vector to represent each character.

So, input to CNN is a 16× 1014 matrix
Or: 16 channels, ‘image’ of size 1× 1014 per channel

Different from images: 1-dimensional ‘image’ or feature maps



More CNN models CNN applications

Text classification: model structure



More CNN models CNN applications

Text classification: evaluation

Test error (2nd table) on 8 datasets (1st): deeper is better



More CNN models CNN applications

Summary

CNN extensions: denser, wider, more cardinality

CNN applied to multiple domains

CNN for face verification: triplet loss

CNN for style transfer: separable via conv layers?

CNN for text classification: each text as 1D ‘image’

Further reading:

Oord et al., Wavenet: A generative model for raw audio, arXiv, 2016

Deng et al., ArcFace: additive angular margin loss for deep face
recognition, arXiv, 2018



Comments on first assignment

High-score reports follow points listed on Week 1’s last slide

Low-score reports miss some points, or no long summary!

Understand the paper, then summarize using your own words

Describe ‘what’ and ‘how’, and explain ‘why’

Just occasionally use formulae/figures/table

Delete redundant and non-academic information

Don’t use bullet points; link paragraphs smoothly

Experiments should be described in words, but concisely

List full paper information

Open grammar checker


	More CNN models
	CNN applications
	Appendix

