
Gradient exploding & vanishing Mini-batch issue Overfitting issue

Week 3: Issues in Training

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

14 March, 2019

Gradient exploding & vanishing Mini-batch issue Overfitting issue

1 Gradient exploding & vanishing

2 Mini-batch issue

3 Overfitting issue

Gradient exploding & vanishing Mini-batch issue Overfitting issue

A general model training process

Step 0: Pre-set hyper-parameters

Step 1: Initialize model parameters
Step 2: Repeat over certain number of epochs

Shuffle whole training data
For each mini-batch data

I load mini-batch data
I compute gradient of loss over parameters
I update parameters with gradient descent

Step 3: Save model (structure and parameters)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

But sometimes...

The training is not working well!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Gradient issues for multi-layer networks

∂l

∂w1
=

∂l

∂hl
· (dhl
dul
· dul
dhl−1

) · (dhl−1
dul−1

· dul−1
dhl−2

) . . . (
dh1
du1
· du1
dw1

)

=
∂l

∂hl
· (g′(ul) · wl) · (g′(ul−1) · wl−1) . . . (g′(u1) · x)

If each |g′(ui)wi| > 1, then | ∂l∂w1
| � 1, gradient exploding!

If each |g′(ui)wi| < 1, then | ∂l∂w1
| � 1, gradient vanishing!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Gradient issues for multi-layer networks

∂l

∂w1
=

∂l

∂hl
· (dhl
dul
· dul
dhl−1

) · (dhl−1
dul−1

· dul−1
dhl−2

) . . . (
dh1
du1
· du1
dw1

)

=
∂l

∂hl
· (g′(ul) · wl) · (g′(ul−1) · wl−1) . . . (g′(u1) · x)

If each |g′(ui)wi| > 1, then | ∂l∂w1
| � 1, gradient exploding!

If each |g′(ui)wi| < 1, then | ∂l∂w1
| � 1, gradient vanishing!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Gradient issues for multi-layer networks

∂l

∂w1
=

∂l

∂hl
· (dhl
dul
· dul
dhl−1

) · (dhl−1
dul−1

· dul−1
dhl−2

) . . . (
dh1
du1
· du1
dw1

)

=
∂l

∂hl
· (g′(ul) · wl) · (g′(ul−1) · wl−1) . . . (g′(u1) · x)

If each |g′(ui)wi| > 1, then | ∂l∂w1
| � 1, gradient exploding!

If each |g′(ui)wi| < 1, then | ∂l∂w1
| � 1, gradient vanishing!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Gradient issues for multi-layer networks

∂l

∂w1
=

∂l

∂hl
· (dhl
dul
· dul
dhl−1

) · (dhl−1
dul−1

· dul−1
dhl−2

) . . . (
dh1
du1
· du1
dw1

)

=
∂l

∂hl
· (g′(ul) · wl) · (g′(ul−1) · wl−1) . . . (g′(u1) · x)

If each |g′(ui)wi| > 1, then | ∂l∂w1
| � 1, gradient exploding!

If each |g′(ui)wi| < 1, then | ∂l∂w1
| � 1, gradient vanishing!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Gradient issues for multi-layer networks

∂l

∂w1
=

∂l

∂hl
· (dhl
dul
· dul
dhl−1

) · (dhl−1
dul−1

· dul−1
dhl−2

) . . . (
dh1
du1
· du1
dw1

)

=
∂l

∂hl
· (g′(ul) · wl) · (g′(ul−1) · wl−1) . . . (g′(u1) · x)

If each |g′(ui)wi| > 1, then | ∂l∂w1
| � 1, gradient exploding!

If each |g′(ui)wi| < 1, then | ∂l∂w1
| � 1, gradient vanishing!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To avoid gradient exploding

Gradient exploding makes training process not stable!

The issue would be gone if |g′(ui)| ≤ 1 and |wi| ≤ 1:

already |g′(ui)| ≤ 1

Blue: activation function; Green: derivative of activation

weight initialization, such that |wi| ≤ 1 in general

weight re-normalization during training

rescaling x to |x| ≤ 1
weight re-normalization: https://arxiv.org/abs/1602.07868

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To avoid gradient exploding

Gradient exploding makes training process not stable!

The issue would be gone if |g′(ui)| ≤ 1 and |wi| ≤ 1:

already |g′(ui)| ≤ 1

Blue: activation function; Green: derivative of activation

weight initialization, such that |wi| ≤ 1 in general

weight re-normalization during training

rescaling x to |x| ≤ 1
weight re-normalization: https://arxiv.org/abs/1602.07868

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To avoid gradient exploding

Gradient exploding makes training process not stable!

The issue would be gone if |g′(ui)| ≤ 1 and |wi| ≤ 1:

already |g′(ui)| ≤ 1

Blue: activation function; Green: derivative of activation

weight initialization, such that |wi| ≤ 1 in general

weight re-normalization during training

rescaling x to |x| ≤ 1
weight re-normalization: https://arxiv.org/abs/1602.07868

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To avoid gradient exploding

Gradient exploding makes training process not stable!

The issue would be gone if |g′(ui)| ≤ 1 and |wi| ≤ 1:

already |g′(ui)| ≤ 1

Blue: activation function; Green: derivative of activation

weight initialization, such that |wi| ≤ 1 in general

weight re-normalization during training

rescaling x to |x| ≤ 1
weight re-normalization: https://arxiv.org/abs/1602.07868

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To reduce gradient vanishing

Gradient vanishing makes training very slow!

To reduce this issue, should make |g′(ui)wi| not that small:

choose ReLU activation function: g′(ui) = 1 when ui > 0.
Sigmoid & tanh: g′(ui) ≈ 0 when |ui| � 1

most |wi| not close to 0 if variance of wi not small!
I weight initialization, wi ∼ N(0, σ2) or wi ∼ U(−a, a)
I weight re-normalization during training

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To reduce gradient vanishing

Gradient vanishing makes training very slow!

To reduce this issue, should make |g′(ui)wi| not that small:

choose ReLU activation function: g′(ui) = 1 when ui > 0.
Sigmoid & tanh: g′(ui) ≈ 0 when |ui| � 1

most |wi| not close to 0 if variance of wi not small!
I weight initialization, wi ∼ N(0, σ2) or wi ∼ U(−a, a)
I weight re-normalization during training

Gradient exploding & vanishing Mini-batch issue Overfitting issue

To reduce gradient vanishing

Gradient vanishing makes training very slow!

To reduce this issue, should make |g′(ui)wi| not that small:

choose ReLU activation function: g′(ui) = 1 when ui > 0.
Sigmoid & tanh: g′(ui) ≈ 0 when |ui| � 1

most |wi| not close to 0 if variance of wi not small!
I weight initialization, wi ∼ N(0, σ2) or wi ∼ U(−a, a)
I weight re-normalization during training

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method

Rule: Signal across layer does not shrink and explode!

Suppose g(ul,k) roughly
linear with smaller ul,k, then

hl,k ≈
n∑
j=1

hl−1,jwj,k

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method

Rule: Signal across layer does not shrink and explode!

Suppose g(ul,k) roughly
linear with smaller ul,k, then

hl,k ≈
n∑
j=1

hl−1,jwj,k

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Suppose input signals {hl−1,j} are independent and identically
distributed, and have zero mean; similarly for wj,k. Then

Var(hl,k) ≈
n∑
j=1

Var(hl−1,j)Var(wj,k)

Var(hl) ≈ nVar(hl−1)Var(w)

To make Var(hl) ≈ Var(hl−1):

nVar(w) = 1

Var(w) =
1

n

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Suppose input signals {hl−1,j} are independent and identically
distributed, and have zero mean; similarly for wj,k. Then

Var(hl,k) ≈
n∑
j=1

Var(hl−1,j)Var(wj,k)

Var(hl) ≈ nVar(hl−1)Var(w)

To make Var(hl) ≈ Var(hl−1):

nVar(w) = 1

Var(w) =
1

n

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Suppose input signals {hl−1,j} are independent and identically
distributed, and have zero mean; similarly for wj,k. Then

Var(hl,k) ≈
n∑
j=1

Var(hl−1,j)Var(wj,k)

Var(hl) ≈ nVar(hl−1)Var(w)

To make Var(hl) ≈ Var(hl−1):

nVar(w) = 1

Var(w) =
1

n

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Var(w) =
1

n

Also: Variance of backward gradient signal across layer does not
change!

Var(w) =
1

m

Since the numbers of input and output (n and m) are often
different at one layer, a compromise is:

Var(w) =
2

n+m

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Var(w) =
1

n

Also: Variance of backward gradient signal across layer does not
change!

Var(w) =
1

m

Since the numbers of input and output (n and m) are often
different at one layer, a compromise is:

Var(w) =
2

n+m

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Var(w) =
1

n

Also: Variance of backward gradient signal across layer does not
change!

Var(w) =
1

m

Since the numbers of input and output (n and m) are often
different at one layer, a compromise is:

Var(w) =
2

n+m

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Also: Variance of backward gradient signal across layer does not
change!

Weight initialization by sampling from Gaussian distribution

E(w) = 0 , Var(w) =
2

n+m

Weight initialization by sampling from uniform distribution

w ∼ U[−
√
6√

n+m
,

√
6√

n+m
]

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: Xavier’s method (cont’)

Rule: Signal across layer does not shrink and explode!

Or: Variance of signal across layer does not change!

Also: Variance of backward gradient signal across layer does not
change!

Weight initialization by sampling from Gaussian distribution

E(w) = 0 , Var(w) =
2

n+m

Weight initialization by sampling from uniform distribution

w ∼ U[−
√
6√

n+m
,

√
6√

n+m
]

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: He’s method

Xavier’s method is not appropriate for ReLU activation!

Xavier’s method assumes activation output hl has zero mean.

Output from ReLU certainly has non-zero (positive) mean!

He (Kaiming) proposed a method when activation is ReLU.

Weight initialization by sampling from Gaussian distribution

E(w) = 0 , Var(w) =
2

n

Weight initialization by sampling from uniform distribution

w ∼ U[−
√

6

n
,

√
6

n
]

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification, 2015

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Weight initialization: He’s method

Xavier’s method is not appropriate for ReLU activation!

Xavier’s method assumes activation output hl has zero mean.

Output from ReLU certainly has non-zero (positive) mean!

He (Kaiming) proposed a method when activation is ReLU.

Weight initialization by sampling from Gaussian distribution

E(w) = 0 , Var(w) =
2

n

Weight initialization by sampling from uniform distribution

w ∼ U[−
√

6

n
,

√
6

n
]

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification, 2015

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Training is slow

Weight initialization helps at the beginning!

But, training is often slow to converge!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Issue of mini-batch

Different mini-batch data often have different distributions

Caused different mini-batch input distributions for every layer!

Distribution of one minibatch changes over time for a layer!

Each layer needs to continuously adapt to new distributions

So, let’s make different mini-batch inputs have similar distributions!

Batch normalization!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Issue of mini-batch

Different mini-batch data often have different distributions

Caused different mini-batch input distributions for every layer!

Distribution of one minibatch changes over time for a layer!

Each layer needs to continuously adapt to new distributions

So, let’s make different mini-batch inputs have similar distributions!

Batch normalization!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Issue of mini-batch

Different mini-batch data often have different distributions

Caused different mini-batch input distributions for every layer!

Distribution of one minibatch changes over time for a layer!

Each layer needs to continuously adapt to new distributions

So, let’s make different mini-batch inputs have similar distributions!

Batch normalization!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (BN)

For a layer with d-dimensional input x = (x1, x2, . . . , xd)
T,

For any mini-batch input {xn}, normalize each dimension:

x̂k =
xk − E(xk)√
Var(xk) + ε

E(xk) and Var(xk) are computed from all xk’s in {xn}.
However, such normalization reduces varieties of neurons’
inputs/outputs, i.e., reducing layer’s representation power.

To recover neuron’s representation variety

yk = γkx̂k + βk ≡ BNγk,βk(xk)

γk and βk are independent of mini-batch data!

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (BN)

For a layer with d-dimensional input x = (x1, x2, . . . , xd)
T,

For any mini-batch input {xn}, normalize each dimension:

x̂k =
xk − E(xk)√
Var(xk) + ε

E(xk) and Var(xk) are computed from all xk’s in {xn}.
However, such normalization reduces varieties of neurons’
inputs/outputs, i.e., reducing layer’s representation power.

To recover neuron’s representation variety

yk = γkx̂k + βk ≡ BNγk,βk(xk)

γk and βk are independent of mini-batch data!

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (BN)

For a layer with d-dimensional input x = (x1, x2, . . . , xd)
T,

For any mini-batch input {xn}, normalize each dimension:

x̂k =
xk − E(xk)√
Var(xk) + ε

E(xk) and Var(xk) are computed from all xk’s in {xn}.
However, such normalization reduces varieties of neurons’
inputs/outputs, i.e., reducing layer’s representation power.

To recover neuron’s representation variety

yk = γkx̂k + βk ≡ BNγk,βk(xk)

γk and βk are independent of mini-batch data!

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift, 2015

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Now, different mini-batches have similar distributions for a
layer

Different input dimensions may have different γk and βk

But, how to determine γk and βk for each neuron at each
layer?

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Now, different mini-batches have similar distributions for a
layer

Different input dimensions may have different γk and βk

But, how to determine γk and βk for each neuron at each
layer?

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Solution: consider γk and βk as part of model parameters

Left: Not ideal to normalize input (from non-linear activation)

Right: BN at pre-activation gives a ’more Gaussian’ result

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Solution: consider γk and βk as part of model parameters

Left: Not ideal to normalize input (from non-linear activation)

Right: BN at pre-activation gives a ’more Gaussian’ result

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Horizontal axis: training iterations; vertical: testing accuracy

BN helps train faster and achieve higher accuracy.

However, BN not work well when batch size is small (e.g., 4)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Batch normalization (cont’)

Horizontal axis: training iterations; vertical: testing accuracy

BN helps train faster and achieve higher accuracy.

However, BN not work well when batch size is small (e.g., 4)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Why BN works?

Small learning rate (lr = 0.0001): networks with and w/t BN
perform similarly in testing accuracy with .

Larger learning rate: higher testing accuracy with BN
networks (blue & orange); diverge without BN (not shown).

Gradient exploding & vanishing Mini-batch issue Overfitting issue

So far, so good

So far, the network can be trained fast with BN!

But when to stop training?

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Overfitting issue

Overfitting (red curve): trained to predict training data too
accurate to be generalizable!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Overfitting issue

Overfitting (red curve): trained to predict training data too
accurate to be generalizable!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Overfitting issue

Overfitting (red curve): trained to predict training data too
accurate to be generalizable!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Overfitting issue

Overfitting (red curve): trained to predict training data too
accurate to be generalizable!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Prevent overfitting: early stopping

Early stopping: stop training when prediction error on
validation set does not decrease.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Prevent overfitting: early stopping

Early stopping: stop training when prediction error on
validation set does not decrease.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Lp norm

More model parameters, more likely to be overfitting

Fewer model parameters, more likely to have larger loss

So: need trade-off between loss and number of working
parameters.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Lp norm

More model parameters, more likely to be overfitting

Fewer model parameters, more likely to have larger loss

So: need trade-off between loss and number of working
parameters.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Lp norm (cont’)

Lp regularization

Adding a penalty on large parameter values with Lp norm in the
loss function to reduce overfitting:

L(θ) =
1

N

N∑
n=1

l(yn, f(xn;θ)) + λ‖θ‖p

Lp norm ‖θ‖p ≡ (
∑

i |θi|p)1/p

λ: a hyper-parameter to balance two terms

p = 2: “weight decay”, causing smaller weight values

p = 1: causing fewer non-zero weight parameters

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Lp norm (cont’)

Lp regularization

Adding a penalty on large parameter values with Lp norm in the
loss function to reduce overfitting:

L(θ) =
1

N

N∑
n=1

l(yn, f(xn;θ)) + λ‖θ‖p

Lp norm ‖θ‖p ≡ (
∑

i |θi|p)1/p

λ: a hyper-parameter to balance two terms

p = 2: “weight decay”, causing smaller weight values

p = 1: causing fewer non-zero weight parameters

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout

At training, each hidden neuron is present (not dropped out)
with probability p

So, each mini-batch is to train a different random structure
Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout (cont’)

At test, every neuron is always present. Weights are (down-)
scaled by p, such that output at test time is same as expected
output at training time.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout (cont’)

Dropout reduces test errors on different model architectures
(each architecture with a unique color)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout (cont’)

Dropout works well at large range of rate p.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout (cont’)

Why does dropout work?

At each training, every retaining neuron is forced to finish the
task with less help from other neurons.

At test time, the whole network approximates the average
over many ‘thinned’ (with some neurons dropped) networks.

Drawback of dropout:

It takes 2-3 times longer in training

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Regularization: Dropout (cont’)

Why does dropout work?

At each training, every retaining neuron is forced to finish the
task with less help from other neurons.

At test time, the whole network approximates the average
over many ‘thinned’ (with some neurons dropped) networks.

Drawback of dropout:

It takes 2-3 times longer in training

Gradient exploding & vanishing Mini-batch issue Overfitting issue

More generalization ideas

Besides above regularization techniques, there are other
effective ways to improve model’s generalization ability!

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Data augmentation

Augmentation ways: rotate, scale, translate, flip, shear,
deform, color and illumination change, etc
Data augmentation produced more training data

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Data augmentation

Augmentation ways: rotate, scale, translate, flip, shear,
deform, color and illumination change, etc
Data augmentation produced more training data

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Data augmentation

Augmentation ways: rotate, scale, translate, flip, shear,
deform, color and illumination change, etc
Data augmentation produced more training data

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Ensemble model

Use a group of models (experts) to predict result!

First, train multiple slightly different networks

Networks are different due to different weight initialization,
augmented data, and possibly different model architectures.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Ensemble model

Use a group of models (experts) to predict result!

First, train multiple slightly different networks

Networks are different due to different weight initialization,
augmented data, and possibly different model architectures.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Ensemble model

Use a group of models (experts) to predict result!

First, train multiple slightly different networks

Networks are different due to different weight initialization,
augmented data, and possibly different model architectures.

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Ensemble model (cont’)

Then, collect predictions of all experts for final prediction

Ensemble model generalizes better (lower test error)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Ensemble model (cont’)

Then, collect predictions of all experts for final prediction

Ensemble model generalizes better (lower test error)

Gradient exploding & vanishing Mini-batch issue Overfitting issue

Summary

Gradient issues solved by ReLU, weight initialization, input
normalization, etc.

Batch normalization speeds up training.

Generalization improved by early stopping, Lp regularization,
dropout, data augmentation, and ensemble model, etc.

Further reading:

Sections 7.1, 7.2, 7.4, 7.8, 7.11, 7.12, 8.7.1, in textbook
“Deep learning”, http://www.deeplearningbook.org/

About projects

Course project deadlines:

Team established: 17 March, 2019

Contest selected and summarized: 31 March, 2019

Mid-term report: 21 April, 1 method+result

Final report: 30 June, 2019

Lab project deadlines:

Paper selected: 21 April, 2019

Mid-term report: 12 May, method+first result

Final report: 23 June, 2019

	Gradient exploding & vanishing
	Mini-batch issue
	Overfitting issue
	Appendix

