Week 18: Trends of deep learning

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

27 June, 2019

@ Few-shot learning

© Lifelong learning

Few-shot learning
©000000000

Limitation of deep learning

Deep learning works well...

Few-shot learning
©000000000

Limitation of deep learning

Deep learning works well...

when large training dataset is available!

Few-shot learning
0®00000000

Few-shot learning

@ Few-shot learning: learning with a few training data per class

Few-shot learning
0®00000000

Few-shot learning

@ Few-shot learning: learning with a few training data per class
e Traditionally, KNN or kernel density estimation (KDE)

o Traditionally, feature extraction was pre-designed

Few-shot learning
0®00000000

Few-shot learning

Few-shot learning: learning with a few training data per class
Traditionally, KNN or kernel density estimation (KDE)
Traditionally, feature extraction was pre-designed

With deep learning, any way to learn feature representation?

Or: how to train a DL classifier with just a few data?

Few-shot learning
0®00000000

Few-shot learning

"]
(]
]
(*]
*]

Few-shot learning: learning with a few training data per class
Traditionally, KNN or kernel density estimation (KDE)
Traditionally, feature extraction was pre-designed

With deep learning, any way to learn feature representation?

Or: how to train a DL classifier with just a few data?

Impossible?!

Few-shot learning
00®0000000

Few-shot learning: matching network

@ But: may train a meta-classifier with large ‘meta-dataset’!

@ Meta-classifier: input is a dataset; output is a classifier

Few-shot learning
00®0000000

Few-shot learning: matching network

@ But: may train a meta-classifier with large ‘meta-dataset’!
@ Meta-classifier: input is a dataset; output is a classifier

@ How to represent the output (i.e., a classifier)?
y= Z a(i‘a xi)yi
i=1

where {(x;,y;)} are small dataset as input to meta-classifier,
and a(-) could be considered as an attention model

a(d, 2i) = ec(f(i),g(-’ﬁi))/zg?zl ec(f(#),9(x5))

where f(-), g(+): feature extractors; c(-): similarity measure

Few-shot learning
00®0000000

Few-shot learning: matching network

@ But: may train a meta-classifier with large ‘meta-dataset’!
@ Meta-classifier: input is a dataset; output is a classifier

@ How to represent the output (i.e., a classifier)?

?) = Z a(i‘a xi)yi

i=1
where {(x;,y;)} are small dataset as input to meta-classifier,
and a(-) could be considered as an attention model

a(d, 2i) = ec(f(i),g(-’ﬁi))/zg?zl ec(f(#),9(x5))

where f(-), g(+): feature extractors; c(-): similarity measure

@ Meta-classifier training: using many sets of small datasets to
learn to find the optimal f(-) and g(-).

Few-shot learning
000@000000

Few-shot learning: matching network

@ Traditional classifier training: train by comparing the
difference between predicted and ground-truth output.

@ But what is the ground-truth output for a meta-classifier?

Few-shot learning
000@000000

Few-shot learning: matching network

@ Traditional classifier training: train by comparing the
difference between predicted and ground-truth output.

@ But what is the ground-truth output for a meta-classifier?

@ No ‘ground-truth classifier’ for output of a meta-classifier!

Few-shot learning
000@000000

Few-shot learning: matching network

@ Traditional classifier training: train by comparing the
difference between predicted and ground-truth output.

@ But what is the ground-truth output for a meta-classifier?
@ No ‘ground-truth classifier’ for output of a meta-classifier!

e Training: given a small set {(z;,v;)}, use another small set
{(z,7;)} to evaluate goodness of meta-classifier output:

?j = Z a(jja xz)yz

i=1

Few-shot learning

[e]e]e] le]ele]elele)

Few-shot learning: matching network

Traditional classifier training: train by comparing the
difference between predicted and ground-truth output.

But what is the ground-truth output for a meta-classifier?
No ‘ground-truth classifier’ for output of a meta-classifier!

Training: given a small set {(z;,v;)}, use another small set
{(z,7;)} to evaluate goodness of meta-classifier output:

g = Z a(i.v xi)yi

i=1

So in each training iteration, training set consists of two small
subsets {(x;,v;)} and {(Z;,7;)}.

Over iterations: training sets may be from different classes.

Few-shot learning

[e]e]ele] lelelelele)

Few-shot learning: matching network

@ So meta-classifier training is to find the optimal f(-) and g(-)
by minimizing the prediction error of the classifier

Few-shot learning
00000e0000

Few-shot learning: matching network

@ Once the meta-classifier is trained, then given a small training
dataset for certain number of new classes, the meta-classifier
would output a new classifier for the new classes!

Few-shot learning
00000e0000

Few-shot learning: matching network

@ Once the meta-classifier is trained, then given a small training
dataset for certain number of new classes, the meta-classifier
would output a new classifier for the new classes!

@ The method learned better feature extractor f(-) and g(-)
compared to using pretrained CNN as feature extractor:

MatchNet —————»

Inception — — = — —p

Few-shot learning
0000008000

Matching network: result

@ The proposed method outperforms all others on Omniglot
(below) and mini-lmageNet (not shown)!

5-way Acc 20-way Acc

Model Matching Fn Fine Tune l-shot 5-shot l-shot S5-shot
PIXELS Cosine N 41.7% 632% 26.7% 42.6%
BASELINE CLASSIFIER Cosine N 80.0% 95.0% 69.5% 89.1%
BASELINE CLASSIFIER Cosine Y 823% 98.4% 70.6% 92.0%
BASELINE CLASSIFIER Softmax Y 86.0% 97.6% 72.9% 92.3%
MANN (No Conv) [21] Cosine N 82.8% 94.9% - -
CONVOLUTIONAL SIAMESE NET [11] Cosine N 96.7% 984% 88.0% 96.5%
CONVOLUTIONAL SIAMESE NET [11] Cosine Y 973% 984% 88.1% 97.0%
MATCHING NETS (OURS) Cosine N 98.1% 98.9% 93.8% 98.5%
MATCHING NETS (OURS) Cosine Y 97.9% 98.7% 93.5% 98.7%

Note: ‘Baseline classifier’: trained on all training data, then extract
feature from last conv layer for attention module.

Few-shot learning
0000000800

Few-shot learning: modal-agnostic meta-learning (MAML)

@ Another idea: train a model that can quickly adapt to a new
task using only a few data points and training iterations!

Few-shot learning
0000000800

Few-shot learning: modal-agnostic meta-learning (MAML)

@ Another idea: train a model that can quickly adapt to a new
task using only a few data points and training iterations!

o Consider adapting model fy to a new task 7;, with 6 udpated
to 6, by (1 or few iters) gradient descent of loss on task 7;

9; =0-— OngETi (fg)

Few-shot learning
0000000800

Few-shot learning: modal-agnostic meta-learning (MAML)

@ Another idea: train a model that can quickly adapt to a new
task using only a few data points and training iterations!

o Consider adapting model fy to a new task 7;, with 6 udpated
to 6, by (1 or few iters) gradient descent of loss on task 7;

9; =0-— OngETi (fg)

o Better model fy means less loss L7;(fy) on new tasks after
one/few (so ‘quick adapt’) update of model parameter to 6.

mein Z Lr(fo) = Z Eﬂ(fQ—an,CTi(fe))

Ti~p(T) Ti~p(T)

One task: one ‘training data’ for meta-learning!

Few-shot learning
0000000800

Few-shot learning: modal-agnostic meta-learning (MAML)

@ Another idea: train a model that can quickly adapt to a new
task using only a few data points and training iterations!

o Consider adapting model fy to a new task 7;, with 6 udpated
to 6, by (1 or few iters) gradient descent of loss on task 7;

9; =0-— OngETi (fg)

o Better model fy means less loss L7;(fy) on new tasks after
one/few (so ‘quick adapt’) update of model parameter to 6.

mein Z Lr(fo) = Z Eﬂ(fQ—an,CTi(fg))
Ti~p(T) Ti~p(T)
One task: one ‘training data’ for meta-learning!

@ Note: meta-optimization is performed over model parameters
6, but loss is computed using updated parameters 6.

Few-shot learning
0000000080

MAML (cont’)

@ Meta-optimization over tasks (‘training data’) to update
model param 6

0 0-5Y9 > Lr(fo)

Ti~p(T)

Few-shot learning
0000000080

MAML (cont’)

@ Meta-optimization over tasks (‘training data’) to update
model param 6

0 0-5Y9 > Lr(fo)

Ti~p(T)

@ Meta-gradient update involves a gradient through gradient

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, j3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3: Sample batch of tasks 7; ~ p(T)
4 for all 7; do
5: Evaluate Vo L7 (fo) with respect to K examples
6 Compute adapted parameters with gradient de-
scent: 0; = 0 — aVo L7, (fo)
7: end for
8: Update § < 6 — SV ZﬁNp(T) Lr,(fo;)
9: end while

Few-shot learning
000000000e

MAML: result

e MAML works for any differentiable objective, including those
of regression and reinforcement learning!

@ Matching network learns feature embedding, while MAML
learns good model initialization for multiple tasks.

Few-shot learning
000000000e

MAML: result

e MAML works for any differentiable objective, including those
of regression and reinforcement learning!

@ Matching network learns feature embedding, while MAML
learns good model initialization for multiple tasks.

o Classification: MAML outperforms matching networks.

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £ 0.54%

49.79 £ 0.79%

nearest neighbor baseline

41.08 £ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £+ 0.84%

55.31 £ 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 £ 0.77%

60.60 + 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 £ 0.91%

MAML (ours)

48.70 + 1.84%

63.11 + 0.92%

Lifelong learning
©0000000000

Lifelong learning: another limitation

We learn new knowledge without forgetting old!

But Al catastrophically forgets old!

Lifelong learning
0®000000000

Lifelong learning: elastic weight consolidation (EWC)

o EWC idea: when learning a new task, do not change weights
too much which are important to previous tasks.

Lifelong learning
0®000000000

Lifelong learning: elastic weight consolidation (EWC)

o EWC idea: when learning a new task, do not change weights
too much which are important to previous tasks.
@ Fisher information matrix F: importance of model params.

Lifelong learning
0®000000000

Lifelong learning: elastic weight consolidation (EWC)

o EWC idea: when learning a new task, do not change weights
too much which are important to previous tasks.

@ Fisher information matrix F: importance of model params.

@ Can overcome catastrophic forgetting by minimizing loss

£0) = £o(0) + 30 S Fi(0: — 03.)°

o Fisher-weighted regularization helps update model parameters
(red arrow) good for both previous task A and new task B.

= Low error for task B = EWC
= Low error for task A = L2

—— : == no penalty

EWC: result

Lifelong learning
00@00000000

and previous tasks

train A train B train C
1.0 4 . EWC

| : L2
i ! SGD
0.8 - ' '

1.0 q

Task A

Task B

0.8 4
1.0 4

Task C

0.8 4
Frac. correct

Training time

W

Fraction correct

0.9

0.8 1

On MNIST, with EWC: classifier does not degrade on current

Blue curve: updating model by just focuing on current task

single task performance

ST ¢ ——ee—9o__,
EWC

SGD+dropout

T T T T T T T T T

2 3 4 5 6 7 8 9 10

Number of tasks

Lifelong learning
000@0000000

Memory aware synapse

o EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

@ Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

Lifelong learning
000@0000000

Memory aware synapse

o EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

@ Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

@ Output change with a small change ¢ in parameters
F(l‘lg 0+ 6) — F(.Tl; 9) ~ Zgij(ml)éij
,J

where g;; is the partial derivative of network output I’ w.r.t.
parameter 0; ; at data point x;

Lifelong learning
000@0000000

Memory aware synapse

o EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

@ Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

@ Output change with a small change ¢ in parameters
F(l‘lg 0+ 6) — F(.Tl; 9) ~ Zgij(ml)éij
,J

where g;; is the partial derivative of network output I’ w.r.t.
parameter 0; ; at data point x;

@ Importance of parameter ; ; can be estimated by
accumulating g;; over all available data points

1 N
Qg =~ > 1l giglon) |
k=1

Lifelong learning
00008000000

Memory aware synapse

@ Loss is similar to EWC, except the importance parameter

A .
L(0) = Lnew(0) + 5 > Qs (035 — 075)°
b,

e Data label is not necessary when computing €2;;, so £2;; can be
updated on any available data (without corresponding labels).

@ Both this method and EWC focus on model parameters.

@ Another idea: somehow get ‘data’ of previous tasks!

Lifelong learning
00000@00000

Continual learning with deep generative replay

o ldea: generate realistic synthetic data for previous tasks

Lifelong learning
00000@00000

Continual learning with deep generative replay

o ldea: generate realistic synthetic data for previous tasks
@ Solution: using GAN!

Lifelong learning
00000@00000

Continual learning with deep generative replay

o ldea: generate realistic synthetic data for previous tasks
@ Solution: using GAN!
@ Dual model ‘scholar’: (GAN, Solver); Solver, e.g., classifier

Lifelong learning
00000@00000

Continual learning with deep generative replay

Solution: using GAN!

Idea: generate realistic synthetic data for previous tasks

Dual model ‘scholar’: (GAN, Solver); Solver, e.g., classifier
Train GAN: with GAN-generated data and new task's data
Train Solver: with new task’s (data, labels) and old scholar’s

(generated data, predicted labels)

Current Task

:I, New Scholar
Current

Replay | x !

Generator,

0ld Scholar
Training Generator

Current Task

New Scholar

Generator

0ld Scholar
Training Solver

Lifelong learning
000000@0000

Continual learning with deep generative replay: result

@ On MNIST, 5 tasks, continuously learning to recognize new
classes of digits; test on all tasks' (test) data

@ Similar performance between ER and GR

1.0
r /“‘ﬁ" /—\/‘M
0.8
[1v]
0.6
M\“‘v None
0.5
x103
049 5 10 15 20 25

iterations
@ ER: using exact past real data with predicted labels for replay
@ GR (proposed): using realistic synthetic data for replay
@ ‘Noise’: using un-realistic synthetic data for replay

Lifelong learning
00000008000

More trends and limitations of deep learning or Al

Learn from experience: deep reinforcement learning
Learn from partially labelled data: semi-supervised
Learn from unlabelled data: unsupervised learning

Learn from multi-modality data

Lifelong learning
00000008000

More trends and limitations of deep learning or Al

"]
(]
]
(*]
o .

Learn from experience: deep reinforcement learning
Learn from partially labelled data: semi-supervised
Learn from unlabelled data: unsupervised learning

Learn from multi-modality data

So far, mostly perceptual All Need cognitive Al!

Lifelong learning
00000008000

More trends and limitations of deep learning or Al

"]
(]
]
(*]
o .

Learn from experience: deep reinforcement learning
Learn from partially labelled data: semi-supervised
Learn from unlabelled data: unsupervised learning

Learn from multi-modality data

So far, mostly perceptual All Need cognitive Al!

@ Current deep learning depends on gradient descent.

@ But human brains probably does not use gradient descent.

Lifelong learning
00000008000

More trends and limitations of deep learning or Al

"]
(]
]
(*]
o .

Learn from experience: deep reinforcement learning
Learn from partially labelled data: semi-supervised
Learn from unlabelled data: unsupervised learning

Learn from multi-modality data

So far, mostly perceptual All Need cognitive Al!

@ Current deep learning depends on gradient descent.
@ But human brains probably does not use gradient descent.

@ Learning and inference by reasoning!
e.g., deep learning + graphical model

Lifelong learning
00000000800

Project reports

Course project report:
o Title; Team members
@ Abstract: problem, difficulty, method idea, key result.
@ Introduction: application background, research problem,

related existing methods, implemented methods, main results
including team ranking (e.g., ranked 5th over 120 teams).

@ Problem formulation: formally describe the research problem,
better with math representation.

@ Method: the basic ideas, model structures, etc.

o Experiments: all experiments, including worse and better
results, better explaining why.

@ Conclusion: very short summary, conclusion from experimental
evaluation, future work.

@ Source code!

No plagiarism!!

Lifelong learning
00000000080

Project reports

Lab project report:
o Title; authors; your name.
@ Abstract: problem, difficulty, idea, your key result.

@ Introduction: application background, research problem,
related existing methods, the paper’s idea, your key results.

@ Problem formulation: formally describe the research problem.
@ Method: the basic idea, model structure.

e Implementation: what you have done, difficulties &
solutions.

o Experiments: all tests, including worse and better results.
@ Conclusion: conclusion from experimental evaluation.

Source codel!

No plagiarism!!

	Few-shot learning
	Lifelong learning

