Week 18: Trends of deep learning

Instructor: Ruixuan Wang wangruix5@mail.sysu.edu.cn

School of Data and Computer Science Sun Yat-Sen University

27 June, 2019

Few-shot learning

Lifelong learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limitation of deep learning

Deep learning works well...

Few-shot learning

Lifelong learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Limitation of deep learning

Deep learning works well...

when large training dataset is available!

Few-shot learning

• Few-shot learning: learning with a few training data per class

Few-shot learning

- Few-shot learning: learning with a few training data per class
- Traditionally, KNN or kernel density estimation (KDE)
- Traditionally, feature extraction was pre-designed

Few-shot learning

- Few-shot learning: learning with a few training data per class
- Traditionally, KNN or kernel density estimation (KDE)
- Traditionally, feature extraction was pre-designed
- With deep learning, any way to learn feature representation?
- Or: how to train a DL classifier with just a few data?

Few-shot learning

- Few-shot learning: learning with a few training data per class
- Traditionally, KNN or kernel density estimation (KDE)
- Traditionally, feature extraction was pre-designed
- With deep learning, any way to learn feature representation?
- Or: how to train a DL classifier with just a few data?

Impossible?!

- But: may train a meta-classifier with large 'meta-dataset'!
- Meta-classifier: input is a dataset; output is a classifier

Few-shot learning: matching network

- But: may train a meta-classifier with large 'meta-dataset'!
- Meta-classifier: input is a dataset; output is a classifier
- How to represent the output (i.e., a classifier)?

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

where $\{(x_i, y_i)\}$ are small dataset as input to meta-classifier, and $a(\cdot)$ could be considered as an attention model

$$a(\hat{x}, x_i) = \frac{e^{c(f(\hat{x}), g(x_i))}}{\sum_{j=1}^k e^{c(f(\hat{x}), g(x_j))}}$$

where $f(\cdot)$, $g(\cdot)$: feature extractors; $c(\cdot)$: similarity measure

Few-shot learning: matching network

- But: may train a meta-classifier with large 'meta-dataset'!
- Meta-classifier: input is a dataset; output is a classifier
- How to represent the output (i.e., a classifier)?

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

where $\{(x_i, y_i)\}$ are small dataset as input to meta-classifier, and $a(\cdot)$ could be considered as an attention model

$$a(\hat{x}, x_i) = \frac{e^{c(f(\hat{x}), g(x_i))}}{\sum_{j=1}^k e^{c(f(\hat{x}), g(x_j))}}$$

where $f(\cdot), \ g(\cdot)$: feature extractors; $c(\cdot)$: similarity measure

• Meta-classifier training: using many sets of small datasets to learn to find the optimal $f(\cdot)$ and $g(\cdot)$.

- Traditional classifier training: train by comparing the difference between predicted and ground-truth output.
- But what is the ground-truth output for a meta-classifier?

- Traditional classifier training: train by comparing the difference between predicted and ground-truth output.
- But what is the ground-truth output for a meta-classifier?
- No 'ground-truth classifier' for output of a meta-classifier!

- Traditional classifier training: train by comparing the difference between predicted and ground-truth output.
- But what is the ground-truth output for a meta-classifier?
- No 'ground-truth classifier' for output of a meta-classifier!
- Training: given a small set $\{(x_i, y_i)\}$, use another small set $\{(\tilde{x}_j, \tilde{y}_j)\}$ to evaluate goodness of meta-classifier output:

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

- Traditional classifier training: train by comparing the difference between predicted and ground-truth output.
- But what is the ground-truth output for a meta-classifier?
- No 'ground-truth classifier' for output of a meta-classifier!
- Training: given a small set $\{(x_i, y_i)\}$, use another small set $\{(\tilde{x}_j, \tilde{y}_j)\}$ to evaluate goodness of meta-classifier output:

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

- So in each training iteration, training set consists of two small subsets $\{(x_i, y_i)\}$ and $\{(\tilde{x}_j, \tilde{y}_j)\}$.
- Over iterations: training sets may be from different classes.

Few-shot learning

Few-shot learning: matching network

• So meta-classifier training is to find the optimal $f(\cdot)$ and $g(\cdot)$ by minimizing the prediction error of the classifier

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

on training set $\{\{(x_i, y_i)\}, \{(\hat{x}_j, \hat{y}_j)\}\}$ over iterations.

Few-shot learning: matching network

• Once the meta-classifier is trained, then given a **small** training dataset for certain number of **new** classes, the meta-classifier would output a new classifier for the new classes!

- Once the meta-classifier is trained, then given a **small** training dataset for certain number of **new** classes, the meta-classifier would output a new classifier for the new classes!
- The method learned better feature extractor $f(\cdot)$ and $g(\cdot)$ compared to using pretrained CNN as feature extractor:

Matching network: result

 The proposed method outperforms all others on Omniglot (below) and mini-ImageNet (not shown)!

Model	Matching Fn	Fine Tune	5-way A	c 20-way Acc	t
			1 51101 5 51	iot i shot 5 sho	
PIXELS	Cosine	Ν	41.7% 63.2	% 26.7% 42.6%	6
BASELINE CLASSIFIER	Cosine	Ν	80.0% 95.0	% 69.5% 89.1%	Ь
BASELINE CLASSIFIER	Cosine	Y	82.3% 98.4	% 70.6% 92.0%	Ь
BASELINE CLASSIFIER	Softmax	Y	86.0% 97.6	% 72.9% 92.3%	6
MANN (No Conv) 21	Cosine	Ν	82.8% 94.9	% – –	_
CONVOLUTIONAL SIAMESE NET [11]	Cosine	Ν	96.7% 98.4	% 88.0% 96.5%	6
CONVOLUTIONAL SIAMESE NET [11]	Cosine	Y	97.3% 98.4	% 88.1% 97.0%	b
MATCHING NETS (OURS)	Cosine	N	98.1% 98.9	% 93.8 % 98.5%	6
MATCHING NETS (OURS)	Cosine	Y	97.9% 98.7	% 93.5% 98.7 %	,

Note: 'Baseline classifier': trained on all training data, then extract feature from last conv layer for attention module.

Few-shot learning: modal-agnostic meta-learning (MAML)

• Another idea: train a model that can **quickly adapt** to a new task using only a few data points and training iterations!

Few-shot learning ○○○○○○●○○

Few-shot learning: modal-agnostic meta-learning (MAML)

- Another idea: train a model that can **quickly adapt** to a new task using only a few data points and training iterations!
- Consider adapting model f_{θ} to a new task \mathcal{T}_i , with θ udpated to θ'_i by (1 or few iters) gradient descent of loss on task \mathcal{T}_i

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$$

A D N A 目 N A E N A E N A B N A C N

Few-shot learning: modal-agnostic meta-learning (MAML)

- Another idea: train a model that can **quickly adapt** to a new task using only a few data points and training iterations!
- Consider adapting model f_θ to a new task T_i, with θ udpated to θ'_i by (1 or few iters) gradient descent of loss on task T_i

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$$

 Better model f_θ means less loss L_{T_i}(f_{θ'_i}) on new tasks after one/few (so 'quick adapt') update of model parameter to θ'_i.

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

One task: one 'training data' for meta-learning!

Few-shot learning: modal-agnostic meta-learning (MAML)

- Another idea: train a model that can **quickly adapt** to a new task using only a few data points and training iterations!
- Consider adapting model f_{θ} to a new task \mathcal{T}_i , with θ udpated to θ'_i by (1 or few iters) gradient descent of loss on task \mathcal{T}_i

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$$

 Better model f_θ means less loss L_{T_i}(f_{θ'_i}) on new tasks after one/few (so 'quick adapt') update of model parameter to θ'_i.

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

One task: one 'training data' for meta-learning!

• Note: meta-optimization is performed over model parameters θ , but loss is computed using updated parameters θ'_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MAML (cont')

• Meta-optimization over tasks ('training data') to update model param $\boldsymbol{\theta}$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

MAML (cont')

• Meta-optimization over tasks ('training data') to update model param $\boldsymbol{\theta}$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

• Meta-gradient update involves a gradient through gradient

Algorithm 1 Model-Agnostic Meta-Learning **Require:** $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: while not done do Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ 3. 4: for all \mathcal{T}_i do 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples Compute adapted parameters with gradient de-6: scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ end for 7: 8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ 9: end while

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

MAML: result

- MAML works for any differentiable objective, including those of regression and reinforcement learning!
- Matching network learns feature embedding, while MAML learns good model initialization for multiple tasks.

MAML: result

- MAML works for any differentiable objective, including those of regression and reinforcement learning!
- Matching network learns feature embedding, while MAML learns good model initialization for multiple tasks.
- Classification: MAML outperforms matching networks.

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm \mathbf{1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	${f 48.70 \pm 1.84\%}$	$63.11 \pm 0.92\%$	

Lifelong learning: another limitation

We learn new knowledge without forgetting old!

But AI catastrophically forgets old!

Lifelong learning: elastic weight consolidation (EWC)

• EWC idea: when learning a new task, do not change weights too much which are important to previous tasks.

Lifelong learning: elastic weight consolidation (EWC)

- EWC idea: when learning a new task, do not change weights too much which are important to previous tasks.
- Fisher information matrix **F**: importance of model params.

Lifelong learning: elastic weight consolidation (EWC)

- EWC idea: when learning a new task, do not change weights too much which are important to previous tasks.
- Fisher information matrix **F**: importance of model params.
- Can overcome catastrophic forgetting by minimizing loss

$$\mathcal{L}(heta) = \mathcal{L}_B(heta) + \sum_i rac{\lambda}{2} F_i (heta_i - heta_{A,i}^*)^2$$

• Fisher-weighted regularization helps update model parameters (red arrow) good for both previous task A and new task B.

EWC: result

- On MNIST, with EWC: classifier does not degrade on current and previous tasks
- Blue curve: updating model by just focuing on current task

(日)

э

Memory aware synapse

- EWC: estimate parameter importance based on sensitivity of loss function to changes in parameters
- Another idea: estimate parameter importance based on sensitivity of network output to changes in parameters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Memory aware synapse

- EWC: estimate parameter importance based on sensitivity of loss function to changes in parameters
- Another idea: estimate parameter importance based on sensitivity of network output to changes in parameters.
- $\bullet\,$ Output change with a small change δ in parameters

$$F(x_1; \theta + \delta) - F(x_1; \theta) \approx \sum_{i,j} g_{ij}(x_1) \delta_{ij}$$

where g_{ij} is the partial derivative of network output F w.r.t. parameter $\theta_{i,j}$ at data point x_1

Memory aware synapse

- EWC: estimate parameter importance based on sensitivity of loss function to changes in parameters
- Another idea: estimate parameter importance based on sensitivity of network output to changes in parameters.
- $\bullet\,$ Output change with a small change δ in parameters

$$F(x_1; \theta + \delta) - F(x_1; \theta) \approx \sum_{i,j} g_{ij}(x_1) \delta_{ij}$$

where g_{ij} is the partial derivative of network output F w.r.t. parameter $\theta_{i,j}$ at data point x_1

• Importance of parameter $\theta_{i,j}$ can be estimated by accumulating g_{ij} over all available data points

$$\Omega_{ij} = \frac{1}{N} \sum_{k=1}^{N} || g_{ij}(x_k) |$$

Memory aware synapse

• Loss is similar to EWC, except the importance parameter

$$L(\theta) = L_{new}(\theta) + \frac{\lambda}{2} \sum_{i,j} \Omega_{ij} (\theta_{ij} - \theta_{ij}^*)^2$$

- Data label is not necessary when computing Ω_{ij} , so Ω_{ij} can be updated on any available data (without corresponding labels).
- Both this method and EWC focus on model parameters.
- Another idea: somehow get 'data' of previous tasks!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Continual learning with deep generative replay

• Idea: generate realistic synthetic data for previous tasks

Continual learning with deep generative replay

- Idea: generate realistic synthetic data for previous tasks
- Solution: using GAN!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Continual learning with deep generative replay

- Idea: generate realistic synthetic data for previous tasks
- Solution: using GAN!
- Dual model 'scholar': (GAN, Solver); Solver, e.g., classifier

Few-shot learning

Continual learning with deep generative replay

- Idea: generate realistic synthetic data for previous tasks
- Solution: using GAN!
- Dual model 'scholar': (GAN, Solver); Solver, e.g., classifier
- Train GAN: with GAN-generated data and new task's data
- Train Solver: with new task's (data, labels) and old scholar's (generated data, predicted labels)

Few-shot learning

Continual learning with deep generative replay: result

- On MNIST, 5 tasks, continuously learning to recognize new classes of digits; test on all tasks' (test) data
- Similar performance between ER and GR

• ER: using exact past real data with predicted labels for replay

- GR (proposed): using realistic synthetic data for replay
- 'Noise': using un-realistic synthetic data for replay

More trends and limitations of deep learning or AI

- Learn from experience: deep reinforcement learning
- Learn from partially labelled data: semi-supervised
- Learn from unlabelled data: unsupervised learning
- Learn from multi-modality data
- ...

More trends and limitations of deep learning or AI

- Learn from experience: deep reinforcement learning
- Learn from partially labelled data: semi-supervised
- Learn from unlabelled data: unsupervised learning
- Learn from multi-modality data
- ...

So far, mostly perceptual AI! Need cognitive AI!

More trends and limitations of deep learning or AI

- Learn from experience: deep reinforcement learning
- Learn from partially labelled data: semi-supervised
- Learn from unlabelled data: unsupervised learning
- Learn from multi-modality data
- ...

So far, mostly perceptual AI! Need cognitive AI!

- Current deep learning depends on gradient descent.
- But human brains probably does not use gradient descent.

More trends and limitations of deep learning or AI

- Learn from experience: deep reinforcement learning
- Learn from partially labelled data: semi-supervised
- Learn from unlabelled data: unsupervised learning
- Learn from multi-modality data
- ...

So far, mostly perceptual AI! Need cognitive AI!

- Current deep learning depends on gradient descent.
- But human brains probably does not use gradient descent.
- Learning and inference by **reasoning**! e.g., deep learning + graphical model

Project reports

Course project report:

- Title; Team members
- Abstract: problem, difficulty, method idea, key result.
- Introduction: application background, research problem, related existing methods, implemented methods, main results including team ranking (e.g., ranked 5th over 120 teams).
- Problem formulation: formally describe the research problem, better with math representation.
- Method: the basic ideas, model structures, etc.
- **Experiments**: all experiments, including worse and better results, better explaining why.
- Conclusion: very short summary, conclusion from experimental evaluation, future work.
- Source code!

No plagiarism!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Project reports

Lab project report:

- Title; authors; your name.
- Abstract: problem, difficulty, idea, your key result.
- Introduction: application background, research problem, related existing methods, the paper's idea, your key results.
- Problem formulation: formally describe the research problem.
- Method: the basic idea, model structure.
- Implementation: what you have done, difficulties & solutions.
- Experiments: all tests, including worse and better results.
- Conclusion: conclusion from experimental evaluation.
- Source code!

No plagiarism!!