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Few-shot learning

Few-shot learning: learning with a few training data per class

Traditionally, KNN or kernel density estimation (KDE)

Traditionally, feature extraction was pre-designed

With deep learning, any way to learn feature representation?

Or: how to train a DL classifier with just a few data?

Impossible?!
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Few-shot learning: matching network

But: may train a meta-classifier with large ‘meta-dataset’ !

Meta-classifier: input is a dataset; output is a classifier

How to represent the output (i.e., a classifier)?

where {(xi, yi)} are small dataset as input to meta-classifier,
and a(·) could be considered as an attention model

where f(·), g(·): feature extractors; c(·): similarity measure

Meta-classifier training: using many sets of small datasets to
learn to find the optimal f(·) and g(·).
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Few-shot learning: matching network

Traditional classifier training: train by comparing the
difference between predicted and ground-truth output.

But what is the ground-truth output for a meta-classifier?

No ‘ground-truth classifier’ for output of a meta-classifier!

Training: given a small set {(xi, yi)}, use another small set
{(x̃j , ỹj)} to evaluate goodness of meta-classifier output:

So in each training iteration, training set consists of two small
subsets {(xi, yi)} and {(x̃j , ỹj)}.
Over iterations: training sets may be from different classes.
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Few-shot learning: matching network

So meta-classifier training is to find the optimal f(·) and g(·)
by minimizing the prediction error of the classifier

on training set {{(xi, yi)}, {(x̂j , ŷj)}} over iterations.
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Few-shot learning: matching network

Once the meta-classifier is trained, then given a small training
dataset for certain number of new classes, the meta-classifier
would output a new classifier for the new classes!

The method learned better feature extractor f(·) and g(·)
compared to using pretrained CNN as feature extractor:
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Matching network: result

The proposed method outperforms all others on Omniglot
(below) and mini-ImageNet (not shown)!

Note: ‘Baseline classifier’: trained on all training data, then extract
feature from last conv layer for attention module.



Few-shot learning Lifelong learning

Few-shot learning: modal-agnostic meta-learning (MAML)

Another idea: train a model that can quickly adapt to a new
task using only a few data points and training iterations!

Consider adapting model fθ to a new task Ti, with θ udpated
to θ′i by (1 or few iters) gradient descent of loss on task Ti

Better model fθ means less loss LTi(fθ′i) on new tasks after
one/few (so ‘quick adapt’) update of model parameter to θ′i.

One task: one ‘training data’ for meta-learning!

Note: meta-optimization is performed over model parameters
θ, but loss is computed using updated parameters θ′i.
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MAML (cont’)

Meta-optimization over tasks (‘training data’) to update
model param θ

Meta-gradient update involves a gradient through gradient
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MAML: result

MAML works for any differentiable objective, including those
of regression and reinforcement learning!

Matching network learns feature embedding, while MAML
learns good model initialization for multiple tasks.

Classification: MAML outperforms matching networks.
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Lifelong learning: another limitation

We learn new knowledge without forgetting old!

But AI catastrophically forgets old!
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Lifelong learning: elastic weight consolidation (EWC)

EWC idea: when learning a new task, do not change weights
too much which are important to previous tasks.

Fisher information matrix F: importance of model params.

Can overcome catastrophic forgetting by minimizing loss

Fisher-weighted regularization helps update model parameters
(red arrow) good for both previous task A and new task B.
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EWC: result

On MNIST, with EWC: classifier does not degrade on current
and previous tasks

Blue curve: updating model by just focuing on current task
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Memory aware synapse

EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

Output change with a small change δ in parameters

where gij is the partial derivative of network output F w.r.t.
parameter θi,j at data point x1

Importance of parameter θi,j can be estimated by
accumulating gij over all available data points



Few-shot learning Lifelong learning

Memory aware synapse

EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

Output change with a small change δ in parameters

where gij is the partial derivative of network output F w.r.t.
parameter θi,j at data point x1

Importance of parameter θi,j can be estimated by
accumulating gij over all available data points



Few-shot learning Lifelong learning

Memory aware synapse

EWC: estimate parameter importance based on sensitivity of
loss function to changes in parameters

Another idea: estimate parameter importance based on
sensitivity of network output to changes in parameters.

Output change with a small change δ in parameters

where gij is the partial derivative of network output F w.r.t.
parameter θi,j at data point x1

Importance of parameter θi,j can be estimated by
accumulating gij over all available data points



Few-shot learning Lifelong learning

Memory aware synapse

Loss is similar to EWC, except the importance parameter

Data label is not necessary when computing Ωij , so Ωij can be
updated on any available data (without corresponding labels).

Both this method and EWC focus on model parameters.

Another idea: somehow get ‘data’ of previous tasks!
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Continual learning with deep generative replay

Idea: generate realistic synthetic data for previous tasks

Solution: using GAN!

Dual model ‘scholar’: (GAN, Solver); Solver, e.g., classifier

Train GAN: with GAN-generated data and new task’s data

Train Solver: with new task’s (data, labels) and old scholar’s
(generated data, predicted labels)
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Continual learning with deep generative replay: result

On MNIST, 5 tasks, continuously learning to recognize new
classes of digits; test on all tasks’ (test) data

Similar performance between ER and GR

ER: using exact past real data with predicted labels for replay

GR (proposed): using realistic synthetic data for replay

‘Noise’: using un-realistic synthetic data for replay



Few-shot learning Lifelong learning

More trends and limitations of deep learning or AI

Learn from experience: deep reinforcement learning

Learn from partially labelled data: semi-supervised

Learn from unlabelled data: unsupervised learning

Learn from multi-modality data

...

So far, mostly perceptual AI! Need cognitive AI!

Current deep learning depends on gradient descent.

But human brains probably does not use gradient descent.

Learning and inference by reasoning!
e.g., deep learning + graphical model
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Project reports

Course project report:

Title; Team members

Abstract: problem, difficulty, method idea, key result.

Introduction: application background, research problem,
related existing methods, implemented methods, main results
including team ranking (e.g., ranked 5th over 120 teams).

Problem formulation: formally describe the research problem,
better with math representation.

Method: the basic ideas, model structures, etc.

Experiments: all experiments, including worse and better
results, better explaining why.

Conclusion: very short summary, conclusion from experimental
evaluation, future work.

Source code!

No plagiarism!!
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Lab project report:

Title; authors; your name.

Abstract: problem, difficulty, idea, your key result.

Introduction: application background, research problem,
related existing methods, the paper’s idea, your key results.

Problem formulation: formally describe the research problem.

Method: the basic idea, model structure.

Implementation: what you have done, difficulties &
solutions.

Experiments: all tests, including worse and better results.

Conclusion: conclusion from experimental evaluation.

Source code!

No plagiarism!!
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