Factorization k	Knowledge transfer	Pruning	Quantization	New model designs

Week 17: Efficient deep learning

Instructor: Ruixuan Wang wangruix5@mail.sysu.edu.cn

School of Data and Computer Science Sun Yat-Sen University

20 June, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Factorization	Knowledge transfer	Pruning	Quantization	New model designs

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Motivation				

- Real-time processing in applications like self-driving
- Memory and battery is limited in devices like mobile phone

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Motivation				

- Real-time processing in applications like self-driving
- Memory and battery is limited in devices like mobile phone

Need smaller model and fast computation!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Model effic	ciency			

- Multiple ways to improve efficiency in computation & memory
- We mainly focus on 'algorithms for efficient inference'

Note: refer to Stanford CS231n Lecture 15 (2017) for other parts! Figures in next 2 slides from Zhang et al., "Accelerating Very Deep Convolutional Networks for Classification and Detection", arXiv, 2015; Lebedev et al., "Speeding-up convolutional neural networks using fine-tuned CP-decomposition", ICLR, 2015

Factorization ●○○	Knowledge transfer	Pruning 000000	Quantization	New model designs
Factorizatio	n: low-rank ma	trix decor	nposition	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Unfold d kernels of size $k \times k \times c$ into matrix W of size $d \times (k^2c + 1)$; note '1' for bias parameter per kernel

Factorization ●00	Knowledge transfer	Pruning 000000	Quantization	New model designs
Factorizatio	on: low-rank r	natrix dec	omposition	

- Unfold d kernels of size $k \times k \times c$ into matrix W of size $d \times (k^2c + 1)$; note '1' for bias parameter per kernel
- Low-rank decomposition W = PW', where P is $d \times d'$ and W' is $d' \times (k^2c + 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Unfold d kernels of size $k \times k \times c$ into matrix W of size $d \times (k^2c + 1)$; note '1' for bias parameter per kernel
- Low-rank decomposition ${\bf W}={\bf PW}'$, where ${\bf P}$ is $d\times d'$ and ${\bf W}'$ is $d'\times (k^2c+1)$
- i.e., decomposed into one layer with d' kernels of size $k \times k \times c$, and 2^{nd} layer with d kernels of size $1 \times 1 \times d'$

• Jaderberg et al.: decompose T kernels of size $d \times d \times S$ into R kernels of size $d \times 1 \times S$ and T kernels of size $1 \times d \times R$

- Jaderberg et al.: decompose T kernels of size $d \times d \times S$ into R kernels of size $d \times 1 \times S$ and T kernels of size $1 \times d \times R$
- canonical polyadic (CP) decomposition: decomposed 4D tensor of size d × d × S × T into R kernels of size 1 × 1 × S, of size d × 1 × 1, of 1 × d × 1, and T kernels of size 1 × 1 × R

Factorization ○○●	Knowledge transfer	Pruning 000000	Quantization	New model designs
Factorizati	on limitation			

Factorization focuses on efficient computation!

How to make model smaller?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Use a pre-trained large network or ensemble of networks to teach a smaller one, both with softened softmax

softmax
$$(x,T)_i = \frac{e^{x_i/T}}{\sum_j e^{x_j/T}}$$

• Soft label for teaching; smaller T = 1 for inference

Hinton et al., "Distilling the Knowledge in a Neural Network", NIPS, 2014

Factorization	Knowledge transfer ○●○○	Pruning 000000	Quantization	New model designs
Distillation	n network			

- Training with soft labels generalizes well with 3% data (last row), while training with hard labels not (second row)
- Soft labels encode knowledge (e.g., similarity) across classes

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• 'Knowledge' could be transferred via other layers

 $\bullet\,$ Gram matrix ${\bf G}$ across layers captures 'flow between layers'

Figures here and in next slide from Yim et al., "A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning", CVPR, 2017, (A) + (E) + (

- Train student network by min L2 loss in gram matrices
- Then fine-tune student network with task-specific loss

Factorization	Knowledge transfer	Pruning ●00000	Quantization	New model designs
Network p	oruning			

- Remove insignificant connections (in fully connected layers)
- Similar idea can be used to remove kernels in conv layers

Figures here and in next 2 slides from Stanford CS231n Lecture 15 (2017)

э

Factorization	Knowledge transfer	Pruning ○●○○○○	Quantization	New model designs
How to pri	ine			

- Prune weights (connections) with small values
- Iteratively retrain model after pruning

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Retraining can largely recover accuracy

• Reduce model size, but may not accelerate test computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Idea: prune insignificant feature channels at each layer!

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Channel	pruning: anothe	er way to p	orune	

- Idea: prune insignificant feature channels at each layer!
- With a scaling factor γ for each channel, add regularization term $g(\gamma)$ to loss:

$$L = \sum_{(x,y)} l(f(x,W), y) + \lambda \sum_{\gamma \in \Gamma} g(\gamma)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $g(\gamma) = |\gamma|$ forces γ close to zero!

Factorization	Knowledge transfer	Pruning ○○○●○○	Quantization	New model designs
Channel	pruning: anoth	er way to p	orune	

- Idea: prune insignificant feature channels at each layer!
- With a scaling factor γ for each channel, add regularization term $g(\gamma)$ to loss:

$$L = \sum_{(x,y)} l(f(x,W), y) + \lambda \sum_{\gamma \in \Gamma} g(\gamma)$$

where $g(\gamma) = |\gamma|$ forces γ close to zero!

• γ is the parameter in Batch Normalization, one per channel

$$\hat{z} = \frac{z_{in} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}; \ z_{out} = \gamma \hat{z} + \beta$$

• If γ is introduced elsewhere in network, its effect would be cancelled by BN or by expanding weight values

Figures in next slide from Liu et al., "Learning Efficient Convolutional Networks through Network Slimming", ICCV, 2017

- Prune channels with near-zero scaling γ
- Repeat a few times: fine-tune after pruning channels

(日) (四) (日) (日) (日)

- Prune channels with near-zero scaling γ
- Repeat a few times: fine-tune after pruning channels

• Thinner models, less computation (and running-memory)

Factorization	Knowledge transfer	Pruning 00000●	Quantization	New model designs
So far				

Above: start from a large model! Reduce layers, kernels, kernel sizes, connections!

Another idea: not reduce but quantize variables!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Factorization	Knowledge transfer	Pruning 000000	Quantization •oooooo	New model designs
XNOR-net				

• Binary-weight-network (2^{nd} row) : filter weights binarized

Figures and tables here and in next 4 slides from Rastegari et al., "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks", ECCV, 2016 (

Factorization	Knowledge transfer	Pruning 000000	Quantization ••••••	New model designs
XNOR-net				

- Binary-weight-network (2^{nd} row) : filter weights binarized
- XNOR-net (3^{rd} row) : layer input and filter binarized
- Convolution between binary input and binary filter can be computed by XNOR and bitcounting operations

Figures and tables here and in next 4 slides from Rastegari et al., "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks", ECCV, 2016 (

Factorization	Knowledge transfer	Pruning 000000	Quantization ○●○○○○○	New model designs
Binarization	of filters			

• Approximate filter W with binary $\mathbf{B} \in \{+1, -1\}^{d \times d \times c}$ and a scaling factor α , such that $\mathbf{W} \approx \alpha \mathbf{B}$

$$J(\mathbf{B}, \alpha) = \|\mathbf{W} - \alpha \mathbf{B}\|^2$$
$$\alpha^*, \mathbf{B}^* = \underset{\alpha, \mathbf{B}}{\operatorname{argmin}} J(\mathbf{B}, \alpha)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Factorization
 Knowledge transfer
 Pruning
 Quantization
 New model designs

 000
 000000
 000000
 0000000
 00000000

 Binarization of filters
 0000000
 0000000
 0000000

• Approximate filter W with binary $\mathbf{B} \in \{+1, -1\}^{d \times d \times c}$ and a scaling factor α , such that $\mathbf{W} \approx \alpha \mathbf{B}$

$$J(\mathbf{B}, \alpha) = \|\mathbf{W} - \alpha \mathbf{B}\|^2$$
$$\alpha^*, \mathbf{B}^* = \underset{\alpha, \mathbf{B}}{\operatorname{argmin}} J(\mathbf{B}, \alpha)$$

The solution

$$\mathbf{B}^* = \operatorname{sign}(\mathbf{W}) \quad \alpha^* = \frac{1}{n} \|\mathbf{W}\|_{\ell 1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Train: use binary filters for feedforward pass and gradient computation, but update parameters on real-valued filters

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Training	CNN with scale	d binary f	ilters	

• Parameter change is tiny, so update on real-valued weights

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (\mathbf{I}, \mathbf{Y}) , cost function $C(\mathbf{Y}, \hat{\mathbf{Y}})$, current weight \mathcal{W}^t and current learning rate η^t .

Output: updated weight \mathcal{W}^{t+1} and updated learning rate η^{t+1} .

- 1: Binarizing weight filters:
- 2: for l = 1 to L do
- 3: **for** k^{th} filter in l^{th} layer **do**
- 4: $\mathcal{A}_{lk} = \frac{1}{n} \| \mathcal{W}_{lk}^t \|_{\ell_1}$
- 5: $\mathcal{B}_{lk} = \operatorname{sign}(\mathcal{W}_{lk}^t)$
- $6: \qquad \widetilde{\mathcal{W}}_{lk} = \mathcal{A}_{lk} \mathcal{B}_{lk}$
- 7: $\hat{\mathbf{Y}} = \mathbf{BinaryForward}(\mathbf{I}, \mathcal{B}, \mathcal{A})$ // standard forward propagation except that convolutions are computed using equation 1 or 11
- 8: $\frac{\partial C}{\partial \widetilde{W}} = \text{BinaryBackward}(\frac{\partial C}{\partial \widehat{\mathbf{Y}}}, \widetilde{W})$ // standard backward propagation except that gradients are computed using \widetilde{W} instead of W^t Update non-binary weights

- 9: $\mathcal{W}^{t+1} = \mathbf{UpdateParameters}(\mathcal{W}^t, \frac{\partial C}{\partial \mathcal{W}}, \eta_t)$ // Any update rules (*e.g.*, SGD or ADAM)
- 10: $\eta^{t+1} =$ **UpdateLearningrate** (η^t, t) // Any learning rate scheduling function

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
XNOR-net				

• Similarly for part of layer input: $\mathbf{X} \approx \beta \operatorname{sign}(\mathbf{X})$, such that $\mathbf{I} * \mathbf{W} \approx (\operatorname{sign}(\mathbf{I}) \circledast \operatorname{sign}(\mathbf{W})) \odot \mathbf{K} \alpha$

$\circledast:$ convolutional operation using XNOR and bitcounts

Factorization	Knowledge transfer	Pruning 000000	Quantization 0000●00	New model designs
XNOR-net:	evaluation			

- Left: memory for binary weights is much smaller
- Middle, Right: around $60 \times$ speed-up with 3×3 filters
- But, accuracy degrades compared to binary weight network

• XNOR-net: not quantize gradients, so no speed-up during BP

- XNOR-net: not quantize gradients, so no speed-up during BP
- Channel/kernel-wise scaling factors make bit convolution between gradients and weights impossible! Solution: use a single scaling factor for all kernels per layer.

- XNOR-net: not quantize gradients, so no speed-up during BP
- Channel/kernel-wise scaling factors make bit convolution between gradients and weights impossible!
 Solution: use a single scaling factor for all kernels per layer.
- Adding random (uniform) noise during quantizing gradient is crucial; noise less than magnitude of quantization error
- Quantization of gradients allows to accelerate low bit-width network training on CPU, FPGA, ASIC, GPU

- XNOR-net: not quantize gradients, so no speed-up during BP
- Channel/kernel-wise scaling factors make bit convolution between gradients and weights impossible!
 Solution: use a single scaling factor for all kernels per layer.
- Adding random (uniform) noise during quantizing gradient is crucial; noise less than magnitude of quantization error
- Quantization of gradients allows to accelerate low bit-width network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:

- Gradients require larger bit-width than activations
- Activations require larger bit-width than weights

Zhou et al., "DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients", arXiv, 2016

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
Limitation	s of methods s	so far		

All above: still start from a large model!

Can we directly design light models?

Figures and tables in next 3 slides from landola et al., "SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and j0.5MB model size", ICLR, 2017

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs ●೦೦೦೦೦೦೦೦೦೦೦೦೦೦
SqueezeNet				

- SqueezeNet 'Fire module': squeeze layer + expand layer
- $\bullet\,$ Squeeze layer: all are 1×1 filters, so reduce parameters
- Expand layer: mixed 1×1 and 3×3 filters
- Fewer filters in squeeze layer: so reduce input channels (to expand layer)

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
SaueezeNet				

• SqueezeNet (left) and its variants

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs ○○●○○○○○○○○○○○○○
SaueezeNet				

- $\bullet~50\times$ reduction in model size compared to AlexNet
- SqueezeNet can be 'compressed', resulting in $510\times$ reduction in model size with no decrease in accuracy

CNN architecture	Compression Approach	Data	$Original \rightarrow$	Reduction in	Top-1	Top-5
		Туре	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al.,	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
	2014)					
AlexNet	Network Pruning (Han	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
	et al., 2015b)					
AlexNet	Deep	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
	Compression (Han					
	et al., 2015a)					
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

Figures and tables in next 4 slides from Howard et al., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv, 2017

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs ○○○●○○○○○○○○○○○○
MobileNet				

MobileNet: (a) is divided into (b) followed by (c)

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
MobileNet				

MobileNet: (a) is divided into (b) followed by (c)

Suppose input feature map size: $D_F \times D_F$, input channel #: M, output channel #: N, kernel size: $D_K \times D_K$. Computation cost:

- (a) $D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$
- (b) $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F$
- (c) $N \cdot D_F \cdot D_F$

Computation reduction:

- $(b+c)/a = \frac{1}{N} + \frac{1}{D_K^2}$
- $D_K = 3$: $8 \sim 9$ times less computation

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
MobileNet	· structure			

- 28 layers
- used BN+ReLU
- thinner model with αM and αN , where $0 < \alpha \leq 1$
- low-resolution input to further reduce computation

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224\times224\times3$
Conv dw / s1	$3 \times 3 \times 32$ dw	$112\times112\times32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112\times112\times32$
Conv dw / s2	$3 \times 3 \times 64$ dw	$112\times112\times64$
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$
Conv dw / s2	3 imes 3 imes 128 dw	$56\times 56\times 128$
Conv / s1	$1\times1\times128\times256$	$28\times28\times128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28\times28\times256$
Conv / s1	$1\times1\times256\times256$	$28\times28\times256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1\times1\times256\times512$	$14\times14\times256$
5 Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14\times14\times512$
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14\times14\times512$
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC / s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
MobileNet:	result			

- MobileNet have much smaller computation and parameters
- Accuracy reduced with thinner (x-axis) & smaller (color) input

Mode	1		Ima	ıgel	Net	1	Milli	ion		Mi	llion
			Aco	cura	icy	M	ult-A	Adds		Para	meters
Conv Mobi	leNe	et	71.7%			486	6		2	9.3	
MobileN	Vet		7().69	6		56	9		4	4.2
	80	•	224	•	192	•	160	٠	128		
Ś	70							_			
cura											
et Ac	60							•			
igene						٠					
Ima	50	-									
	40 ().4	0.6	0.8	; 1		2			4	
					Millio	on Par	ametei	ſS			
									•		

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
MobileNet:	result			

- MobileNet with similar accuracy but less computation and fewer parameters than VGG16 and GoogleNet
- $\alpha = 0.5$, input 160×160 : better than AlexNet while being 45 times smaller and 9.4 times less compute than AlexNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

Figures and tables in next 3 slides from Sandler et al., "MobileNetV2: Inverted Residuals and Linear Bottlenecks", arXiv, 2018

(日) (四) (日) (日) (日)

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs ○○○○○○○●○○○○○○○○
MobileNet	V2			

- MobileNet version 2: used bottleneck/inverted residual block (Figure b; right-side figure; table)
- Efficient memory use: expanded tensors (feature maps) inside each residual block are not necessarily stored in memory

Factorization	FactorizationKnowledge transfer0000000		Quantization	New model designs ○○○○○○○○●○○○○○○○
MobileNet	: V2: detail			

- Parameters: t expansion factor; c output channel number;
 - n repeated block times; s stride (for first block if repeated)

Input	Operator	t	c	n	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^2 \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^2 \times 64$	bottleneck	6	96	3	1
$14^2 \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
MobileNet	V2: result			

- Nonlinearity in bottleneck (Fig. a, green) destroys information of low-dim manifold embedded in the higher-dim space
- Shortcut connecting bottlenecks performs better (Fig. b)

(a) Impact of non-linearity in (b) Impact of variations in the bottleneck layer.(b) Impact of variations in residual blocks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
ShuffleNet				

- Novelty 1: (regularly) shuffle output channels across groups after group convlution
- Novelty 2: depthwise convolution after channel shuffle
- Shuffling makes information from input channels flow to every group in the next group convolution

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
ShuffleNet:	structure			

- Totally 50 layers
- With constrained computation: the more groups divided, the more channels could be added, so more information encoded

Layer	Output size	KSize	Stride	Repeat	Output channels (g groups))	
					g = 1	g = 2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1	112×112	3×3	2	1	24	24	24	24	24
MaxPool	56×56	3×3	2						
Stage2	28×28		2	1	144	200	240	272	384
	28×28		1	3	144	200	240	272	384
Stage3	14×14		2	1	288	400	480	544	768
	14×14		1	7	288	400	480	544	768
Stage4	7×7		2	1	576	800	960	1088	1536
	7×7		1	3	576	800	960	1088	1536
GlobalPool	1×1	7×7							
FC					1000	1000	1000	1000	1000
Complexity					143M	140M	137M	133M	137M

シック 単 (中本)(中本)(日)(日)

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs
ShuffleNet:	effect of group	conv and	shuffle	

• Group conv (g > 1) is better than the one without (g = 1)

Model	Complexity	Classification error (%)				
	(MFLOPs)	g = 1	g=2	g = 3	g = 4	g = 8
ShuffleNet $1 \times$	140	33.6	32.7	32.6	32.8	32.4
ShuffleNet $0.5 \times$	38	45.1	44.4	43.2	41.6	42.3
ShuffleNet $0.25 \times$	13	57.1	56.8	55.0	54.2	52.7

• Shuffles help! ('ShuffleNet $s \times$ ':scaling filters number s times)

Model	Cls err. (%, no shuffle)	Cls err. (%, shuffle)	Δ err. (%)
ShuffleNet 1x $(g = 3)$	34.5	32.6	1.9
ShuffleNet 1x $(g = 8)$	37.6	32.4	5.2
ShuffleNet $0.5x (g = 3)$	45.7	43.2	2.5
ShuffleNet 0.5x ($g = 8$)	48.1	42.3	5.8
ShuffleNet $0.25x (g = 3)$	56.3	55.0	1.3
ShuffleNet $0.25x (g = 8)$	56.5	52.7	3.8

Factorization	Knowledge transfer	Pruning	Quantization	New model designs
				000000000000000000000000000000000000000
		The sectors		
Shutfielle	r' comparison i	WITH OTHER	models	

- With similar computation complexity, ShuffleNet works better than popular CNN models, including MobileNet
- ShuffleNet is a backbone model, can be combined with others
- Better not due to more depth (last vs. 3rd last row)

Complexity (MFLOPs)	VGG-like	Re	sNet	Xception-like	R	esNeXt	Shu	ffleNet (ours)
140	50.7	3	7.3	33.6		33.3		$(1\times, g=8)$
38	-	4	8.8	45.1		46.0		$(0.5 \times, g = 4)$
13	-	6	3.7	57.1		65.2	52.7	$(0.25 \times, g = 8)$
Model			Com	omplexity (MFLOPs)		Cls err.	(%)	Δ err. (%)
1.0 MobileNet-224			569			29.4	Ļ	-
ShuffleNet $2 \times (g = 1)$	3)		524			26.3	;	3.1
ShuffleNet $2 \times$ (with	SE[13], g =	3)	527			24.7	'	4.7
0.75 MobileNet-224			325			31.6)	-
ShuffleNet $1.5 \times (g =$	= 3)		292			28.5	5	3.1
0.25 MobileNet-224				41		49.4	ŀ	-
ShuffleNet $0.5 \times (g =$	= 4)		38			41.6	5	7.8
ShuffleNet $0.5 \times$ (sha	allow, $g = 3$)			40		42.8	;	6.6

Factorization	Knowledge transfer	Pruning	Quantization	New model designs
				000000000000000000000000000000000000000
ShuffleNlet	·· comparison	with other	models	

- ShuffleNet is a very light model!
- With similar accuracy, ShuffleNet is much more efficient
- e.g., theoretically 18 times faster than AlexNet (last row)

Model	Cls err. (%)	Complexity (MFLOPs)
VGG-16 [30]	28.5	15300
ShuffleNet $2 \times (g = 3)$	26.3	524
GoogleNet [33]*	31.3	1500
ShuffleNet $1 \times (g = 8)$	32.4	140
AlexNet [21]	42.8	720
SqueezeNet [14]	42.5	833
ShuffleNet $0.5 \times (g = 4)$	41.6	38

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Factorization	Knowledge transfer	Pruning 000000	Quantization	New model designs ○○○○○○○○○○○○○○
Summary				

- Efficiency is crucial for many applications!
- Ideas: reduce, quantize, compact
- Often trade off between efficiency and accuracy
- A new and active research topic

Further reading:

- Zhu et al., 'Trained ternary quantization', ICLR, 2017
- Luo et al., 'Thinnet: a filter level pruning method for deep neural network compression', ICCV, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Yu et al., 'Slimmable neural networks', ICLR, 2019