Week 17: Efficient deep learning

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

20 June, 2019

@ Factorization

© Knowledge transfer
© Pruning

Q Quantization

© New model designs

Motivation

@ Real-time processing in applications like self-driving

@ Memory and battery is limited in devices like mobile phone

Motivation

@ Real-time processing in applications like self-driving

@ Memory and battery is limited in devices like mobile phone

Need smaller model and fast computation!

Model efficiency

@ Multiple ways to improve efficiency in computation & memory

@ We mainly focus on ‘algorithms for efficient inference’

Algorithm

Algorithms for
Efficient Inference

H

a

Note: refer to Stanford CS231n Lecture 15 (2017) for other parts!

Figures in next 2 slides from Zhang et al., “Accelerating Very Deep Convolutional Networks for Classification and
Detection”, arXiv, 2015; Lebedev et al., “Speeding-up convolutional neural networks using fine-tuned
CP-decomposition”, ICLR, 2015

Factorization
®00

Factorization: low-rank matrix decomposition

@ Unfold d kernels of size k x k x ¢ into matrix W of size
d x (k®>c +1); note ‘1’ for bias parameter per kernel

Factorization
®00

Factorization: low-rank matrix decomposition

@ Unfold d kernels of size k X k X ¢ into matrix W of size
d x (k®>c +1); note ‘1’ for bias parameter per kernel

@ Low-rank decomposition W = PW’, where P is d x d’ and
W'is d x (k*>c+1)

Factorization
®00

Factorization: low-rank matrix decomposition

@ Unfold d kernels of size k X k X ¢ into matrix W of size
d x (k®>c +1); note ‘1’ for bias parameter per kernel

@ Low-rank decomposition W = PW’, where P is d x d’ and
W'is d x (k*>c+1)

@ i.e., decomposed into one layer with d’ kernels of size
k x k x ¢, and 2™ layer with d kernels of size 1 x 1 x d’

¢ channels d' channels d channels

Factorization
o] Yo}

Factorization: low-rank tensor decomposition

@ Jaderberg et al.: decompose T kernels of size d x d x S into
R kernels of size d x 1 x S and T kernels of size 1 xd x R

s T s T

(a) Full convolution (b) Two-component decomposition (Jaderberg et al., [2014a)

I

(c) CP-decomposition

Factorization
o] Yo}

Factorization: low-rank tensor decomposition

@ Jaderberg et al.: decompose T kernels of size d x d x S into
R kernels of size d x 1 x S and T kernels of size 1 xd X R

@ canonical polyadic (CP) decomposition: decomposed 4D
tensor of size d x d x S x T into R kernels of size 1 x 1 x S,
of sizedx1x1,of 1 xdx1, and T kernels of size 1 x 1 x R

E T
ER

(b) Two-component decomposition (Jaderberg et al., [2014a)

(c) CP-decomposition

Factorization
ooe

Factorization limitation

Factorization focuses on efficient computation!

How to make model smaller?

Knowledge transfer
®000

Distillation: transfer knowledge from one model to another

@ Use a pre-trained large network or ensemble of networks to
teach a smaller one, both with softened softmax

ezi/T
SOftl’IlaX(.’I', T)Z = W
J

@ Soft label for teaching; smaller T" = 1 for inference

1

1

@ !

¢% Probability Vector Predictions F(X) |
oo

) !

1

1
!
1
1
1
1
1
1
1
1
: DNN F trained at temperature T |
1
1
1
!
1
1
1
1
1
1
1
1

g

o
|Z§$ Probability Vector Predictions F¢(X) |
o0s
A

DNN F(X) trained at temperature T |
A A

A A

o ?
% Training Data X | o6 Training Labels F(X)
oo

I Initial Network] Distilled Network

0
; Training Labels Y | Training Data X |
o

Hinton et al., “Distilling the Knowledge in a Neural Network”, NIPS, 2014

Knowledge transfer
000

Distillation network

@ Training with soft labels generalizes well with 3% data (last
row), while training with hard labels not (second row)

@ Soft labels encode knowledge (e.g., similarity) across classes

System & training set

Train Frame Accuracy

Test Frame Accuracy

Baseline (100% of training set) 63.4% 58.9%
Baseline (3% of training set) 67.3% 44.5%
Soft Targets (3% of training set) 65.4% 57.0%

o 'Knowledge’ could be transferred via other layers

Knowledge transfer
[eYe] Yo

Transfer mid-level information

@ Gram matrix G across layers captures ‘flow between layers’

YRl (W) X F2, (x; W
Gi,j(fl}; W) _ Z s,t,L(I) s,t,7 (I)

h X w

—— 1 . n

Feature
map m
———1 _ Transfer the

|
I N> distilled
|
————1
|
|

— knowledge

FSP matrix:
| M Flow of DNN

— .
Feature
map
\ . e e 1
A 7’ _

Teacher Net

Figures here and in next slide from Yim et al., “A Gift from Knowledge Distillation: Fast Optimization, Network
Minimization and Transfer Learning”, CVPR, 2017

Knowledge transfer
oooe

Transfer mid-level information

@ Train student network by min L2 loss in gram matrices

@ Then fine-tune student network with task-specific loss

conv
RelLU

32-layers 21> 5[~ (5|~ ->| 5 residual module |—>| 5 residual module |—>| 5 residual module |-> Q
Teacher Net \ / \ / \ /

a0 e] G
II L2-loss]I L2-loss]I L2-loss
cdn s] e

T inner product

14-layers RENZN {| 2 residual module |\4{| 2 residual module |\—>/| 2 residual module I*
Student Net 8

O
s

ReLU

Residual module

Pruning
©00000

Network pruning

@ Remove insignificant connections (in fully connected layers)

@ Similar idea can be used to remove kernels in conv layers

befare pruning after pruning

pruning
synapses

pruning
neurons

Figures here and in next 2 slides from Stanford CS231n Lecture 15 (2017)

Pruning
0®0000

How to prune

@ Prune weights (connections) with small values

@ lteratively retrain model after pruning

e N

Train Connectivity

|\ J
Uz

(N\

Prune Connections
064K +x+1

G J
L4

e N

Train Weights

m 10x less connections

Pruning

[e]e] lele]e}

Effect of retraining in pruning

@ Retraining can largely recover accuracy

Train Connectivity

Prune Connections

Train Weights

Accuracy Loss

© Pruning Pruning+Retraining @ lterative Pruning and Retraining

0.5%

0.0%~+
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%

-4.5%

40% 50% 60% 70% 80% | 90% | I 100%

Parameters Pruned Away

@ Reduce model size, but may not accelerate test computation

Pruning
00000

Channel pruning: another way to prune

@ ldea: prune insignificant feature channels at each layer!

Pruning
00000

Channel pruning: another way to prune

@ ldea: prune insignificant feature channels at each layer!

@ With a scaling factor « for each channel, add regularization
term g(v) to loss:

L= 1(f(xW)y)+2> g

(z.y) yel

where g(v) = |v| forces v close to zero!

Pruning
00000

Channel pruning: another way to prune

@ ldea: prune insignificant feature channels at each layer!

@ With a scaling factor « for each channel, add regularization
term g(v) to loss:

L= 1(f(xW)y)+2> g

(z.y) el
where g(v) = |v| forces v close to zero!
@ v is the parameter in Batch Normalization, one per channel
Zin — HUB
Vo +e
@ If v is introduced elsewhere in network, its effect would be
cancelled by BN or by expanding weight values

zZ= Zout:'Yz"’_B

Figures in next slide from Liu et al., “Learning Efficient Convolutional Networks through Network Slimming”,
ICCV, 2017

Pruning
000000

Channel pruning (cont’)

@ Prune channels with near-zero scaling ~

@ Repeat a few times: fine-tune after pruning channels

—

Initial) Train with Prune channels Fine-tune the c t
r:\'hfa K ‘ channel sparsity with small R p—. ‘ o?‘:’pai
i regularization scaling factors P e

Pruning
000000

Channel pruning (cont’)

@ Prune channels with near-zero scaling ~

@ Repeat a few times: fine-tune after pruning channels

N

. Initial v UETD T SIIDEEMED Fine-tune the) Compact
* channel sparsity * with small *
network reqularization scaling factors pruned network network

@ Thinner models, less computation (and running-memory)

Model Parameter and FLOP Savings

100.0% (58 Original
BN Parameter Ratio
BB FLOPs Ratio

100

80

60

Ratio (%)

40

20

VGGNet DenseNet-40 ResNet-164

Pruning

0O0000e

Above: start from a large model! Reduce layers,
kernels, kernel sizes, connections!

Another idea: not reduce but quantize variables!

Quantization
©000000

XNOR-net

o Binary-weight-network (2"? row): filter weights binarized

Network Variations Operations ~ Memory | Computation ' Accuracy on

used in Saving Saving ImageNet
Convolution (Inference) | (Inference) (AlexNet)
Real-Value Inputs
Standar_d : Real-Value Weights
Convolution | 541 .921.".034 01243 5041 +,=,X Ix 1x %56.7
4 Input -0.25061... 0.52 0205 . 088
1 Real-Value Inputs
[7 hlhin . » : Binary Weights)
y W .| .= w - - - Binary Weight | 541 921 .0.34-" ey +,- ~32x ~2X %56.8
Weight 025061 ... 052 =i
Win
[Binary Inputs
BinaryWeight : Binary Weights XNOR
Binary Input T ! ~32x ~58x %44.2
(XNOR-Net) 4t bitcount

Figures and tables here and in next 4 slides from Rastegari et al., “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks", ECCV, 2016

Quantization
©000000

XNOR-net

o Binary-weight-network (2"? row): filter weights binarized
o XNOR-net (3" row): layer input and filter binarized

@ Convolution between binary input and binary filter can be
computed by XNOR and bitcounting operations

Memory | Computation ' Accuracy on

Network Variations Qperations
used in Saving Saving ImageNet
Convolution (Inference) | (Inference) (AlexNet)
Real-Value Inputs
Standard : Real-Value Weights
Convolution |0 41.9.21 034" 01243 5041 +,=,X 1x 1x %56.7
2 Input -0.250.61 ... 0.52° 0205 .. 058
| Real-Value Inputs
nlhin . » : Binary Weights)
;b0 L. - - - Binary Weight | 541021 7 .0.34" FEre, +,- ~32x ~2X %56.8
Weight 025061 ... 052 UL
w,
c n Binary Inputs
BinaryWeight Binary Weights XNOR
Binary Input i =02 e ! ~32x ~58x %44.2
(XNOR-Net) -1 e bitcount

Figures and tables here and in next 4 slides from Rastegari et al., “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks", ECCV, 2016

Quantization
0800000

Binarization of filters

o Approximate filter W with binary B € {+1, —1}4X?%¢ and a
scaling factor «, such that W ~ aB
J(B,a) = [|[W —aB|

a*,B* = argminJ (B, a)
a,B

Quantization
0800000

Binarization of filters

o Approximate filter W with binary B € {+1, —1}4X?%¢ and a
scaling factor «, such that W ~ aB

J(B,a) = |W — aB|?

a*, B* = argminJ(B, «)
a,B

@ The solution
. . 1
B* =sign(W) o = E”W”ﬂ

@ Train: use binary filters for feedforward pass and gradient
computation, but update parameters on real-valued filters

Quantization
0000000

Training CNN with scaled binary filters

@ Parameter change is tiny, so update on real-valued weights

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I, Y), cost function C(Y,Y), current weight W* and

current learning rate 7°.

Output: updated weight W**! and updated learning rate 1.

1
2
3
4:
5.
6:
7

: Binarizing weight filters:
:forl=1to L do
for k™ filter in I™ layer do
A = LW lex
?ﬂ“ = sign(W};)
Wik = A Bl
'Y = BinaryForward(I, B, .A) // standard forward propagation except that convolutions are computed
using equation | or 11

E%% = BinaryBackward(g—g y W) // standard backward propagation except that gradients are computed

using W instead of W' Update non-binary weights

: Wit = UpdateParameters(WV?, %, 1) // Any update rules (e.g. SGD or ADAM)
10:

T’,‘t+l = UpdateLearningrate(n‘, t) /! Any learning rate scheduling function

XNOR-net

Quantization
0000000

e Similarly for part of layer input: X ~ fsign(X), such that
I+« W = (sign(I) ® sign(W)) © Ko

@®: convolutional operation using XNOR and bitcounts

(1) Binarizing Weight

Low

S ERE
0204 .. 201

(2) Binarizing Input

02 013 01

|

Inefficient AT
05301202
Redundant computations in overlapping areas
Efficient T =

(4) Convolution with XNOR-Bitcount

0.2 0.1 .."3 0.1
1.4 05 .. 0.2 2
053 ..-1.2 0.2°

w

I

1
— | Wl =cx
n

%”Xth:ﬁ]»»,_'\ ‘

=By

Quantization
0000000

XNOR-net: evaluation

@ Left: memory for binary weights is much smaller
e Middle, Right: around 60x speed-up with 3 x 3 filters

@ But, accuracy degrades compared to binary weight network

Speedup by varying channel size 65 Speedup by varying filter size
X X

1GB M Double Precision
1000 W Bj P it

inary Precision 60)(
800 60)(

600 40x
55x%

400 20)(

200 ove AoMB
ﬂMB 7.4MB 0x 50x
’ 1 32 1024 Ox0 10x10 20x20

VGG-19 ResNet-18 AlexNet . . .
eshe exNe number of channels filter size

Quantization
0000000

DoReFa-net: also quantization of gradient

@ XNOR-net: not quantize gradients, so no speed-up during BP

Quantization
0000000

DoReFa-net: also quantization of gradient

@ XNOR-net: not quantize gradients, so no speed-up during BP
@ Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

Quantization
0000000

DoReFa-net: also quantization of gradient

@ XNOR-net: not quantize gradients, so no speed-up during BP

@ Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

e Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

@ Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

Quantization
0000000

DoReFa-net: also quantization of gradient

@ XNOR-net: not quantize gradients, so no speed-up during BP

@ Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

e Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

@ Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:
o Gradients require larger bit-width than activations

@ Activations require larger bit-width than weights

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
arXiv, 2016

Quantization
0000008

Limitations of methods so far

All above: still start from a large model!

Can we directly design light models?

Figures and tables in next 3 slides from landola et al., “SqueezeNet: AlexNet-level accuracy with 50X fewer
parameters and j0.5MB model size”, ICLR, 2017

SqueezeNet

New model designs
©000000000000000

SqueezeNet ‘Fire module’: squeeze layer 4+ expand layer

Squeeze layer: all are 1 x 1 filters, so reduce parameters

Expand layer: mixed 1 x 1 and 3 x 3 filters

Fewer filters in squeeze layer: so reduce input channels (to

expand layer)

souee®

1x1 convolution filters

Ry

New model designs
0®00000000000000

SqueezeNet

@ SqueezeNet (left) and its variants

4 96 96
maxpool/2 maxpool/2

512
maxpool/2

512 E) E 512

1000 1000 1000

gobaljugpool e global avgpool global avgpool

dog"

512 512
maxpool/2 maxpool/2

I

New model designs
00®0000000000000

SqueezeNet

@ 50x reduction in model size compared to AlexNet

@ SqueezeNet can be ‘compressed’, resulting in 510x reduction
in model size with no decrease in accuracy

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al. 32 bit 240MB — 48MB 5x 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al | [2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47TMB 510x 57.5% 80.3%

Figures and tables in next 4 slides from Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications”, arXiv, 2017

New model designs
000®000000000000

MobileNet

MobileNet: (a) is divided into (b) followed by (c

ﬁﬁﬁ %

— N —

(a) Standard convolution filters

@@@ -

~— M —

(b) Depthwise convolution filters

Y. /&l 4

«— N —

(c) 1x1 pointwise convolution

New model designs
000®000000000000

MobileNet

MobileNet: (a) is divided into (b) followed by (c

Suppose input feature map size:
Dp x Dp, input channel #: M,
output channel #: N, kernel size: N

Dy x Di. Computation cost:
O(a)DK'DK~M‘N'DF~DF
N s s e

Qo (C) N - -Dg-Dp —M—

(b) Depthwise convolution filters

(a) Standard convolution filters

Computation reduction:

o (b+c)/a = % + ﬁ
@ Dy =3: 8 ~9 times less

computation —N—

(c) 1x1 pointwise convolution

New model designs
0000®00000000000

MobileNet: structure

Type / Stride Filter Shape Input Size
Conv /s2 I x3x3x32 224 x 224 x 3
Conv dw /sl 3x3x32dw 112 x 112 x 32
Conv /sl 1x1x32x64 112 x 112 x 32
Conv dw /s2 3 x 3 x64dw 112 x 112 x 64
° 28 |ayers Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw /sl 3 x 3 x 128 dw 56 x 56 x 128
g used BN+R€LU Conv /sl 1x1x128 x 128 56 x 56 x 128
° thinner model Wlth Conv dw /s2 3 x 3 x128dw 56 x 56 x 128
Conv /sl 1 x 1 x 128 x 256 28 x 28 x 128
@M and CEN, Where Conv dw /sl 3 % 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
0<a<l1 Conv dw /52 3% 3 x 256 dw 28 x 28 x 256
.) Conv /sl 1 x 1 x 256 x 512 14 x 14 x 256
@ low-resolution input 5 Comvaw/sT | 3x3x512dw 14 x 14 x 512
to further reduce ><Conv/sl 1x1x512x 512 14 x 14 x 512
Conv dw /s2 3 x 3 x512dw 14 x 14 x 512
computation Conv /sl 1x1x512x 1024 7 X7 x512
Conv dw /s2 3 x 3 x 1024 dw 7 x7x1024
Conv /sl 1x1x1024 x 1024 | 7 x 7 x 1024
Avg Pool /sl Pool 7 x 7 7 x T x1024
FC/sl 1024 x 1000 1x1x1024
Softmax / s1 Classifier 1 x 1 x 1000

New model designs
00000®0000000000

MobileNet: result

@ MobileNet have much smaller computation and parameters
@ Accuracy reduced with thinner (x-axis) & smaller (color) input

Model ImageNet Million Million
Accuracy Mult-Adds Parameters
Conv MobileNet 71.7% 4866 293
MobileNet 70.6% 569 4.2
80
® 224 e 192 160 ® 128
g 70 s :
g [
E 5 o
°
L J
40
04 06 08 1 2 4

Million Parameters

New model designs
000000@000000000

MobileNet: result

@ MobileNet with similar accuracy but less computation and
fewer parameters than VGG16 and GoogleNet

e a = 0.5, input 160 x 160: better than AlexNet while being 45
times smaller and 9.4 times less compute than AlexNet

Model ImageNet Million Million
Accuracy Mult-Adds Parameters

1.0 MobileNet-224 70.6% 569 4.2
GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138
0.50 MobileNet-160 60.2% 76 1.32
Squeezenet 57.5% 1700 1.25
AlexNet 57.2% 720 60

Figures and tables in next 3 slides from Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks”,
arXiv, 2018

New model designs
0000000e00000000

MobileNet V2

@ MobileNet version 2: used bottleneck/inverted residual block
(Figure b; right-side figure; table)

o Efficient memory use: expanded tensors (feature maps) inside
each residual block are not necessarily stored in memory

conv 1x1, Linear

(a) Residual block (b) Inverted residual block Add

Dwise 3x3, Relué

Input | Operator | Output I

Conv 1x1, Relu6
hxwxk 1x1 conv2d, ReLU6 | h x w x (tk)

hxwx tk | 3x3 dwises=s, ReLU6 | 2 x % x (tk) /

Btk | linear Ix1 conv2d how ok et

MobileNet V2: detail

New model designs
00000000e0000000

@ Parameters: t - expansion factor; ¢ - output channel number;
n - repeated block times; s - stride (for first block if repeated)

Input | Operator | t | c ‘ n | s
2242 x 3 conv2d - 32 1|2
1122 x 32 bottleneck 1 16 1|1
1122 x 16 bottleneck 6 24 212
562 x 24 bottleneck 6 32 312
282 x 32 bottleneck | 6 | 64 | 4 |2
142 x 64 bottleneck | 6 | 96 |3 |1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 | 1 |1
7% % 320 conv2d 1x1 | - | 1280 | 1 | 1
72 x 1280 avgpool 7x7 | - - 1] -

1 x1x1280 | conv2d 1x1 | - k -

New model designs
000000000e000000

MobileNet V2: result

@ Nonlinearity in bottleneck (Fig. a, green) destroys information
of low-dim manifold embedded in the higher-dim space

@ Shortcut connecting bottlenecks performs better (Fig. b)

7 72

71
70

{60

“68 — Shortcut between bottlenecks
— Shortcut between expansions
— No residual

67

— Linear botleneck
— Relu6 in bottleneck
&

T Z 3 4 5 6 T 7 3 4 5 3
Step, millons Step, milions.

(a) Impact of non-linearity in (b) Impact of variations in
the bottleneck layer. residual blocks.

New model designs
0000000000e00000

ShuffleNet

@ Novelty 1: (regularly) shuffle output channels across groups
after group convlution

@ Novelty 2: depthwise convolution after channel shuffle

@ Shuffling makes information from input channels flow to every
group in the next group convolution

\4

[~ O !
1x1 GConv LS Channels

BN ReLU Input

Channel Shuffle

¥ GConv1
3x3 DWConv

o Feature I I

1x1 GConv
BN Channel
|: Shuffle
Add
¢ ReLU

ShuffleNet: structure

New model designs
00000000000e0000

e Totally 50 layers

@ With constrained computation: the more groups divided, the
more channels could be added, so more information encoded

Layer Output size | KSize | Stride | Repeat Output channels (g groups)
g=1 g=2 g=3 g=4 ¢g=38
Image 224 x 224 3 3 3 3 3
Convl 112 x 112 | 3x3 2 1 24 24 24 24 24
MaxPool 56 x 56 3x3 2
Stage2 28 x 28 2 1 144 200 240 272 384
28 x 28 1 3 144 200 240 272 384
Stage3 14 x 14 2 1 288 400 480 544 768
14 x 14 1 7 288 400 480 544 768
Stage4 Tx7 2 1 576 800 960 1088 1536
7 1 3 576 800 960 1088 1536
GlobalPool 1x1 TxT
FC 1000 1000 1000 1000 1000
Complexity 143M 140M 137M 133M 137TM

New model designs
000000000000e000

ShuffleNet: effect of group conv and shuffle

@ Group conv (g > 1) is better than the one without (g = 1)

Model Complexity Classification error (%)
(MFLOPs) | g=1 g=2 g¢g=3 g=4 g=28
ShuffleNet 1 x 140 33.6 32.7 32.6 324
ShuffleNet 0.5 x 38 45.1 44.4 432 423
ShuffleNet 0.25 x 13 57.1 56.8 55.0 52.7

@ Shuffles help! (‘ShuffleNet sx":scaling filters number s times)

Model | Cls err. (%, no shuffle) ‘ Cls err. (%, shuffle) ‘ Aerr. (%)
ShuffleNet 1x (g = 3) 345 32.6 1.9
ShuffleNet 1x (g = 8) 37.6 324 52
ShuffleNet 0.5x (g = 3) 45.7 432 2.5
ShuffleNet 0.5x (g = 8) 48.1 42.3 58
ShuffleNet 0.25x (g = 3) 56.3 55.0 1.3
ShuffleNet 0.25x (g = 8) 56.5 52.7 38

New model designs
0000000000000e00

ShuffleNet: comparison with other models

@ With similar computation complexity, ShuffleNet works better
than popular CNN models, including MobileNet

@ ShuffleNet is a backbone model, can be combined with others

@ Better not due to more depth (last vs. 3rd last row)

Complexity (MFLOPs) | VGG-like ‘ ResNet ‘ Xception-like | ResNeXt ‘ ShuffleNet (ours)

140 50.7 373 33.6 333 324 (1x,g=28)
38 - 48.8 45.1 46.0 41.6 (0.5%, g = 4)
13 - 63.7 57.1 65.2 52.7(0.25%x, g = 8)
Model I Complexity (MFLOPs) I Cls err. (%) ‘ Aerr. (%)
1.0 MobileNet-224 569 204 -
ShuffleNet 2x (g = 3) 524 26.3 3.1
ShuffleNet 2 x (with SE[13], g = 3) 527 24.7 4.7
0.75 MobileNet-224 325 31.6 -
ShuffleNet 1.5% (g = 3) 292 28.5 3.1
0.25 MobileNet-224 41 494 -
ShuffleNet 0.5 (g = 4) 38 41.6 7.8
ShuffleNet 0.5 x (shallow, g = 3) 40 428 6.6

New model designs
00000000000000e0

ShuffleNet: comparison with other models

@ ShuffleNet is a very light model!
@ With similar accuracy, ShuffleNet is much more efficient

@ e.g., theoretically 18 times faster than AlexNet (last row)

Model ‘ Cls err. (%) | Complexity (MFLOPs)
VGG-16 [30] 28.5 15300
ShuffleNet 2x (g = 3) 26.3 524
GoogleNet [33]* 31.3 1500
ShuffleNet 1x (g = 8) 324 140

AlexNet [21] 42.8 720
SqueezeNet [14] 42.5 833
ShuffleNet 0.5x (g = 4) 41.6 38

New model designs
000000000000000e

Summary

Efficiency is crucial for many applications!

°
@ ldeas: reduce, quantize, compact

o Often trade off between efficiency and accuracy
°

A new and active research topic

Further reading:
@ Zhu et al., ‘Trained ternary quantization’, ICLR, 2017

@ Luo et al., ‘Thinnet: a filter level pruning method for deep neural
network compression’, ICCV, 2017

@ Yu et al., ‘Slimmable neural networks’, ICLR, 2019

	
	Factorization
	Knowledge transfer
	Pruning
	Quantization
	New model designs

