
Factorization Knowledge transfer Pruning Quantization New model designs

Week 17: Efficient deep learning

Instructor: Ruixuan Wang
wangruix5@mail.sysu.edu.cn

School of Data and Computer Science
Sun Yat-Sen University

20 June, 2019

Factorization Knowledge transfer Pruning Quantization New model designs

1 Factorization

2 Knowledge transfer

3 Pruning

4 Quantization

5 New model designs

Factorization Knowledge transfer Pruning Quantization New model designs

Motivation

Real-time processing in applications like self-driving

Memory and battery is limited in devices like mobile phone

Need smaller model and fast computation!

Factorization Knowledge transfer Pruning Quantization New model designs

Motivation

Real-time processing in applications like self-driving

Memory and battery is limited in devices like mobile phone

Need smaller model and fast computation!

Factorization Knowledge transfer Pruning Quantization New model designs

Model efficiency

Multiple ways to improve efficiency in computation & memory

We mainly focus on ‘algorithms for efficient inference’

Note: refer to Stanford CS231n Lecture 15 (2017) for other parts!
Figures in next 2 slides from Zhang et al., “Accelerating Very Deep Convolutional Networks for Classification and

Detection”, arXiv, 2015; Lebedev et al., “Speeding-up convolutional neural networks using fine-tuned
CP-decomposition”, ICLR, 2015

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization: low-rank matrix decomposition

Unfold d kernels of size k × k × c into matrix W of size
d× (k2c+ 1); note ‘1’ for bias parameter per kernel

Low-rank decomposition W = PW′, where P is d× d′ and
W′ is d′ × (k2c+ 1)

i.e., decomposed into one layer with d′ kernels of size
k × k × c, and 2nd layer with d kernels of size 1× 1× d′

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization: low-rank matrix decomposition

Unfold d kernels of size k × k × c into matrix W of size
d× (k2c+ 1); note ‘1’ for bias parameter per kernel

Low-rank decomposition W = PW′, where P is d× d′ and
W′ is d′ × (k2c+ 1)

i.e., decomposed into one layer with d′ kernels of size
k × k × c, and 2nd layer with d kernels of size 1× 1× d′

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization: low-rank matrix decomposition

Unfold d kernels of size k × k × c into matrix W of size
d× (k2c+ 1); note ‘1’ for bias parameter per kernel

Low-rank decomposition W = PW′, where P is d× d′ and
W′ is d′ × (k2c+ 1)

i.e., decomposed into one layer with d′ kernels of size
k × k × c, and 2nd layer with d kernels of size 1× 1× d′

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization: low-rank tensor decomposition

Jaderberg et al.: decompose T kernels of size d× d× S into
R kernels of size d× 1× S and T kernels of size 1× d×R

canonical polyadic (CP) decomposition: decomposed 4D
tensor of size d× d× S × T into R kernels of size 1× 1× S,
of size d× 1× 1, of 1× d× 1, and T kernels of size 1× 1×R

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization: low-rank tensor decomposition

Jaderberg et al.: decompose T kernels of size d× d× S into
R kernels of size d× 1× S and T kernels of size 1× d×R
canonical polyadic (CP) decomposition: decomposed 4D
tensor of size d× d× S × T into R kernels of size 1× 1× S,
of size d× 1× 1, of 1× d× 1, and T kernels of size 1× 1×R

Factorization Knowledge transfer Pruning Quantization New model designs

Factorization limitation

Factorization focuses on efficient computation!

How to make model smaller?

Factorization Knowledge transfer Pruning Quantization New model designs

Distillation: transfer knowledge from one model to another

Use a pre-trained large network or ensemble of networks to
teach a smaller one, both with softened softmax

Soft label for teaching; smaller T = 1 for inference

Hinton et al., “Distilling the Knowledge in a Neural Network”, NIPS, 2014

Factorization Knowledge transfer Pruning Quantization New model designs

Distillation network

Training with soft labels generalizes well with 3% data (last
row), while training with hard labels not (second row)

Soft labels encode knowledge (e.g., similarity) across classes

‘Knowledge’ could be transferred via other layers

Factorization Knowledge transfer Pruning Quantization New model designs

Transfer mid-level information

Gram matrix G across layers captures ‘flow between layers’

Figures here and in next slide from Yim et al., “A Gift from Knowledge Distillation: Fast Optimization, Network
Minimization and Transfer Learning”, CVPR, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

Transfer mid-level information

Train student network by min L2 loss in gram matrices

Then fine-tune student network with task-specific loss

Factorization Knowledge transfer Pruning Quantization New model designs

Network pruning

Remove insignificant connections (in fully connected layers)

Similar idea can be used to remove kernels in conv layers

Figures here and in next 2 slides from Stanford CS231n Lecture 15 (2017)

Factorization Knowledge transfer Pruning Quantization New model designs

How to prune

Prune weights (connections) with small values

Iteratively retrain model after pruning

Factorization Knowledge transfer Pruning Quantization New model designs

Effect of retraining in pruning

Retraining can largely recover accuracy

Reduce model size, but may not accelerate test computation

Factorization Knowledge transfer Pruning Quantization New model designs

Channel pruning: another way to prune

Idea: prune insignificant feature channels at each layer!

With a scaling factor γ for each channel, add regularization
term g(γ) to loss:

where g(γ) = |γ| forces γ close to zero!

γ is the parameter in Batch Normalization, one per channel

If γ is introduced elsewhere in network, its effect would be
cancelled by BN or by expanding weight values

Figures in next slide from Liu et al., “Learning Efficient Convolutional Networks through Network Slimming”,
ICCV, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

Channel pruning: another way to prune

Idea: prune insignificant feature channels at each layer!

With a scaling factor γ for each channel, add regularization
term g(γ) to loss:

where g(γ) = |γ| forces γ close to zero!

γ is the parameter in Batch Normalization, one per channel

If γ is introduced elsewhere in network, its effect would be
cancelled by BN or by expanding weight values

Figures in next slide from Liu et al., “Learning Efficient Convolutional Networks through Network Slimming”,
ICCV, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

Channel pruning: another way to prune

Idea: prune insignificant feature channels at each layer!

With a scaling factor γ for each channel, add regularization
term g(γ) to loss:

where g(γ) = |γ| forces γ close to zero!

γ is the parameter in Batch Normalization, one per channel

If γ is introduced elsewhere in network, its effect would be
cancelled by BN or by expanding weight values

Figures in next slide from Liu et al., “Learning Efficient Convolutional Networks through Network Slimming”,
ICCV, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

Channel pruning (cont’)

Prune channels with near-zero scaling γ

Repeat a few times: fine-tune after pruning channels

Thinner models, less computation (and running-memory)

Factorization Knowledge transfer Pruning Quantization New model designs

Channel pruning (cont’)

Prune channels with near-zero scaling γ

Repeat a few times: fine-tune after pruning channels

Thinner models, less computation (and running-memory)

Factorization Knowledge transfer Pruning Quantization New model designs

So far...

Above: start from a large model! Reduce layers,
kernels, kernel sizes, connections!

Another idea: not reduce but quantize variables!

Factorization Knowledge transfer Pruning Quantization New model designs

XNOR-net

Binary-weight-network (2nd row): filter weights binarized

XNOR-net (3rd row): layer input and filter binarized

Convolution between binary input and binary filter can be
computed by XNOR and bitcounting operations

Figures and tables here and in next 4 slides from Rastegari et al., “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks”, ECCV, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

XNOR-net

Binary-weight-network (2nd row): filter weights binarized

XNOR-net (3rd row): layer input and filter binarized

Convolution between binary input and binary filter can be
computed by XNOR and bitcounting operations

Figures and tables here and in next 4 slides from Rastegari et al., “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks”, ECCV, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

Binarization of filters

Approximate filter W with binary B ∈ {+1,−1}d×d×c and a
scaling factor α, such that W ≈ αB

The solution

Train: use binary filters for feedforward pass and gradient
computation, but update parameters on real-valued filters

Factorization Knowledge transfer Pruning Quantization New model designs

Binarization of filters

Approximate filter W with binary B ∈ {+1,−1}d×d×c and a
scaling factor α, such that W ≈ αB

The solution

Train: use binary filters for feedforward pass and gradient
computation, but update parameters on real-valued filters

Factorization Knowledge transfer Pruning Quantization New model designs

Training CNN with scaled binary filters

Parameter change is tiny, so update on real-valued weights

Factorization Knowledge transfer Pruning Quantization New model designs

XNOR-net

Similarly for part of layer input: X ≈ βsign(X), such that

~: convolutional operation using XNOR and bitcounts

Factorization Knowledge transfer Pruning Quantization New model designs

XNOR-net: evaluation

Left: memory for binary weights is much smaller

Middle, Right: around 60× speed-up with 3× 3 filters

But, accuracy degrades compared to binary weight network

Factorization Knowledge transfer Pruning Quantization New model designs

DoReFa-net: also quantization of gradient

XNOR-net: not quantize gradients, so no speed-up during BP

Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:

Gradients require larger bit-width than activations

Activations require larger bit-width than weights

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
arXiv, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

DoReFa-net: also quantization of gradient

XNOR-net: not quantize gradients, so no speed-up during BP

Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:

Gradients require larger bit-width than activations

Activations require larger bit-width than weights

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
arXiv, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

DoReFa-net: also quantization of gradient

XNOR-net: not quantize gradients, so no speed-up during BP

Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:

Gradients require larger bit-width than activations

Activations require larger bit-width than weights

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
arXiv, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

DoReFa-net: also quantization of gradient

XNOR-net: not quantize gradients, so no speed-up during BP

Channel/kernel-wise scaling factors make bit convolution
between gradients and weights impossible!
Solution: use a single scaling factor for all kernels per layer.

Adding random (uniform) noise during quantizing gradient is
crucial; noise less than magnitude of quantization error

Quantization of gradients allows to accelerate low bit-width
network training on CPU, FPGA, ASIC, GPU

To make performance not degrade too much:

Gradients require larger bit-width than activations

Activations require larger bit-width than weights

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients”,
arXiv, 2016

Factorization Knowledge transfer Pruning Quantization New model designs

Limitations of methods so far

All above: still start from a large model!

Can we directly design light models?

Figures and tables in next 3 slides from Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50X fewer
parameters and ¡0.5MB model size”, ICLR, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

SqueezeNet

SqueezeNet ‘Fire module’: squeeze layer + expand layer

Squeeze layer: all are 1× 1 filters, so reduce parameters

Expand layer: mixed 1× 1 and 3× 3 filters

Fewer filters in squeeze layer: so reduce input channels (to
expand layer)

Factorization Knowledge transfer Pruning Quantization New model designs

SqueezeNet

SqueezeNet (left) and its variants

Factorization Knowledge transfer Pruning Quantization New model designs

SqueezeNet

50× reduction in model size compared to AlexNet

SqueezeNet can be ‘compressed’, resulting in 510× reduction
in model size with no decrease in accuracy

Figures and tables in next 4 slides from Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications”, arXiv, 2017

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet

MobileNet: (a) is divided into (b) followed by (c)

Suppose input feature map size:
DF ×DF , input channel #: M ,
output channel #: N , kernel size:
DK ×DK . Computation cost:

(a) DK ·DK ·M ·N ·DF ·DF

(b) DK ·DK ·M ·DF ·DF

(c) N ·DF ·DF

Computation reduction:

(b+c)/a = 1
N + 1

D2
K

DK = 3: 8 ∼ 9 times less
computation

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet

MobileNet: (a) is divided into (b) followed by (c)

Suppose input feature map size:
DF ×DF , input channel #: M ,
output channel #: N , kernel size:
DK ×DK . Computation cost:

(a) DK ·DK ·M ·N ·DF ·DF

(b) DK ·DK ·M ·DF ·DF

(c) N ·DF ·DF

Computation reduction:

(b+c)/a = 1
N + 1

D2
K

DK = 3: 8 ∼ 9 times less
computation

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet: structure

28 layers

used BN+ReLU

thinner model with
αM and αN , where
0 < α ≤ 1

low-resolution input
to further reduce
computation

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet: result

MobileNet have much smaller computation and parameters

Accuracy reduced with thinner (x-axis) & smaller (color) input

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet: result

MobileNet with similar accuracy but less computation and
fewer parameters than VGG16 and GoogleNet

α = 0.5, input 160× 160: better than AlexNet while being 45
times smaller and 9.4 times less compute than AlexNet

Figures and tables in next 3 slides from Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks”,
arXiv, 2018

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet V2

MobileNet version 2: used bottleneck/inverted residual block
(Figure b; right-side figure; table)

Efficient memory use: expanded tensors (feature maps) inside
each residual block are not necessarily stored in memory

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet V2: detail

Parameters: t - expansion factor; c - output channel number;
n - repeated block times; s - stride (for first block if repeated)

Factorization Knowledge transfer Pruning Quantization New model designs

MobileNet V2: result

Nonlinearity in bottleneck (Fig. a, green) destroys information
of low-dim manifold embedded in the higher-dim space

Shortcut connecting bottlenecks performs better (Fig. b)

Factorization Knowledge transfer Pruning Quantization New model designs

ShuffleNet

Novelty 1: (regularly) shuffle output channels across groups
after group convlution

Novelty 2: depthwise convolution after channel shuffle

Shuffling makes information from input channels flow to every
group in the next group convolution

Factorization Knowledge transfer Pruning Quantization New model designs

ShuffleNet: structure

Totally 50 layers

With constrained computation: the more groups divided, the
more channels could be added, so more information encoded

Factorization Knowledge transfer Pruning Quantization New model designs

ShuffleNet: effect of group conv and shuffle

Group conv (g > 1) is better than the one without (g = 1)

Shuffles help! (‘ShuffleNet s×’:scaling filters number s times)

Factorization Knowledge transfer Pruning Quantization New model designs

ShuffleNet: comparison with other models

With similar computation complexity, ShuffleNet works better
than popular CNN models, including MobileNet

ShuffleNet is a backbone model, can be combined with others

Better not due to more depth (last vs. 3rd last row)

Factorization Knowledge transfer Pruning Quantization New model designs

ShuffleNet: comparison with other models

ShuffleNet is a very light model!

With similar accuracy, ShuffleNet is much more efficient

e.g., theoretically 18 times faster than AlexNet (last row)

Factorization Knowledge transfer Pruning Quantization New model designs

Summary

Efficiency is crucial for many applications!

Ideas: reduce, quantize, compact

Often trade off between efficiency and accuracy

A new and active research topic

Further reading:

Zhu et al., ‘Trained ternary quantization’, ICLR, 2017

Luo et al., ‘Thinnet: a filter level pruning method for deep neural
network compression’, ICCV, 2017

Yu et al., ‘Slimmable neural networks’, ICLR, 2019

	
	Factorization
	Knowledge transfer
	Pruning
	Quantization
	New model designs

