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Attack vs. defense game

Intriguing observation

Adversarial examples: input with imperceptible perturbations,
resulting in incorrect output with high confidence

Not just in neural networks; also in most classifiers

Figure from Goodfellow et al., “Explaining and harnessing adversarial examples”, ICLR, 2015
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Adversarial examples: reason

Are adversarial examples from overfitting?

Figures here and in next slide from Stanford CS231n Lecture 16, 2017
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Adversarial examples: reason

Model responses to changes in inputs are nearly linear (Right)!

Left: perturbed inputs along gradient direction in input space

Figure from Goodfellow et al., “Explaining and harnessing adversarial examples”, ICLR, 2015



Attack vs. defense game

FGSM: fast gradient sign method

Model linearity provides one way to adversarial examples

With 1st-order Taylor expansion, loss L(θ, x̃, y) is approx by:

L(θ, x̃, y) ≈ L(θ,x, y) + (x̃− x)T ∇xL(θ,x, y)

θ: model parameter; y: label of input x; x̃: perturbed input

Adversarial example x̃ can be obtained by

argmax
x̃

L(θ,x, y) + (x̃− x)T ∇xL(θ,x, y)

s.t. ‖x̃− x‖∞ < ε

where L∞ (max) norm fewer than ε controls perturbation!

Solution: one-time computation, no need iteration

x̃ = x+ ε sign(∇xL(θ,x, y))
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Attack vs. defense game

Attack with adversarial examples

Attack: use adversarial examples to decrease model’s
performance

‘White-box attack’: know model structures, parameters, etc.

‘Black-box attack’: can only get model output given input

Black-box attack is more common: craft adversarial examples
with Model B, attack model A

White-box attack is stronger: degrade models more seriously
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Attack vs. defense game

FGSM result

On MNIST dataset: ε = 0.25 (ε range [0, 1]), simple network,
classification error 89.4%, average confidence 97.6%

On CIFAR-10 dataset: ε = 0.1, simple network, classification
error 87.2%, average confidence 96.6%

With random images, FGSM fooled CNN as ‘airplane’ (yellow)

Figure from Goodfellow et al., “Explaining and harnessing adversarial examples”, ICLR, 2015
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Attack vs. defense game

Simple extensions of FGSM

Generating targeted adversarial examples with FGSM

x̃ = x− ε sign(∇xL(θ,x, ytarget))

where ytarget is different from the true label of x;
It would make classifier mis-classify x̃ into class ytarget

Iterative FGSM: run FGSM multiple times, with α < ε

xi+1 = Clipε,x {xi + α sign(∇xL(θ,xi, y))}

where Clipε,x is an operation assuring element-wise difference
between xi+1 and original clean image x is within ε.
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Iterative FGSM vs. original FGSM

Iterative FGSM often generates more imperceptible adversarial
examples (below: ε in range [0, 255] )

Figures and tables here and in next 3 slides from Kurakin et al., “Adversarial examples in the physical world”,
ICLR, 2017
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Adversarial examples in the physical world

AI systems operating in the physical world often capture
images directly from camera.

Can adversarial images in physical world also fool AI system?

(a) Print image pairs (clean, adversarial)

(b) Take a photo of printed image with a cell phone camera

(c) Automatically crop and warp examples from the photo

(d) Finally feed the cropped image to classifier
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Attack vs. defense game

In physical world: white-box attacks

Original FGSM (‘fast’) attack is more successful than iterative
FGSM in the physical word

Reason: iterative FGSM generates adversarial examples with
smaller perturbations which could be more likely removed or
affected by photo transformation

Note: classification accuracy in table



Attack vs. defense game

In physical world: white-box attacks

Original FGSM (‘fast’) attack is more successful than iterative
FGSM in the physical word

Reason: iterative FGSM generates adversarial examples with
smaller perturbations which could be more likely removed or
affected by photo transformation

Note: classification accuracy in table



Attack vs. defense game

In physical world: black-box attack

Black-box attack in the physical world also succeeds



Attack vs. defense game

Game: attack vs. defense

Defense: reduce malicious effect of adversarial examples

Multiple rounds of ‘attack-defense’ game
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Attack vs. defense game

How to defend adversarial examples from FGSM?

Adversarial training: augment data with adversarial examples

Find best θ by minimizing L̃(θ,x, y) over all training data

L̃(θ,x, y) = αL(θ,x, y) + (1− α)L(θ,x+ ε sign(∇xL(θ,x, y)), y)

2nd term: make adversarial examples correctly classified

With adversarial training, classification error rate of adversarial
examples on MNIST was reduced from 89.4% to 17.9%

However, it works only for specific and known attack

It remains higher vulnerable to (black-box) transferred
adversarial examples produced by other models

Goodfellow et al., “Explaining and harnessing adversarial examples”, ICLR, 2015
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Attack vs. defense game

Randomized FGSM: improved attack method

Why adversarial training succeed?

Model’s decision surface has sharp curvatures around data
points, hindering attacks based on 1st-order approx of model’s
loss, but permitting black-box attacks

A new attack method based on above reason

Randomized FGSM: apply small perturbation before FGSM

x′ = x+ α sign(N (0, I))

x̃ = x′ + (ε− α) sign(∇x′L(θ,x′, y))

Again, it is a single-time gradient computation, no iteration

Randomized FGSM outperforms FGSM (errors in tables)
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Improved defense for black-box attack

Above: adversarial training is vulnerable to black-box attacks

Improved: ensemble adversarial training - using adversarial
examples from current and other models during training

Ensemble adversarial training (Aadv−ens) shows lower errors
for black-box attacks (last 4 columns)

But it shows higher error for white-box attacks (2nd column)

Tables here and in prev slide from Tramer et al., “Ensemble adversarial training: attacks and defenses”, arXiv, 2017
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Attack vs. defense game

More denfense and attack methods to come!



Attack vs. defense game

Defensive distillation network

Train a distillation network with modified softmax

Large T (e.g., 100) for training; small (e.g., 1) for inference

Papernot et al., “Distillation as a defense to adversarial perturbations against deep neural networks”, SSP, 2016



Attack vs. defense game

Defensive distillation network

Distilled network reduces success rate of adversarial example
crafting from original 95% to 0.5% on MNIST set

Why does it work?

Training causes pre-softmax signal becomes larger by factor T

Then small T during testing makes output of one neuron
almost 1.0 and the others almost 0.0.

This makes gradient of loss function w.r.t input become
almost zero, causing gradient-based attacking not working

When you find a reason, you find a solution!
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Attacking distillation model

Carlini-Wagner (CW) method: find small perturbation δ by

where f is an objective function that drives x to be
misclassified to a targeted class; Lp norm: p = 0, 2,∞
Key innovation: use smooth version of representation for δ,
Lp, and f , such that gradients of both terms are not zero.

Formula here and figures in next 3 slides from Carlini and Wagner, “Towards evaluating the robustness of neural
networks”, arXiv, 2017
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CW attack: result

Targeted adversarial examples with imperceptible perturbation

Similar results on ImageNet data
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CW attack: result

Targeted adversarial examples; init: black or white images
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CW attack: transferable

Higher-confidence adversarial examples are more transferable
‘k’ in function f controls confidence of adversarial examples
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MagNet

A new way: preprocess to remove adversarial noise

Train autoencoder (AE) with normal training dataset

For new normal input, output of AE is close to input

For adversarial input, AE tries to output a similar normal data

MagNet is independent of classifier and attacks

Curve here & tables in next 2 slides from Meng & Chen, “MagNet: a two-pronged defense against adversarial
examples”, CCS, 2017
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MagNet: result

Magnet successfully defends black-box attacks

However, it fails for white-box attacks, where structures and
parameters of classifier and Magnet are known to attackers
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MagNet: result

But, MagNet performs well for gray-box attacks

Gray-box attacks: attacks know defense model’s structure,
training data, etc.; but do not know defense parameter

How: train multiple MagNets, randomly choose one during
testing (A-H: autoencoders; column: attack trained on; row:
used during testing; number: classification accuracy)
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Defense GAN

Another way to remove adversarial noise from input

Step 1: train a GAN with clean data

Step 2: given any data x, obtain its reconstruction with G

z∗ = argmin
z
‖G(z)− x‖22

Step 3: train classifier with GAN-reconstructed data, or with
original data, or with both

Given a test data, use GAN-rec data as input to classifier
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Defense GAN

Defense GAN is independent of any classifier

It does not assume any attack model, well for black-box attack
It is highly nonlinear, making white-box attack difficult
Note: more iterations result in more precise reconstruction
which contains more adversarial noise, causing worse defense
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Defense GAN: result

Outperforms others in defending black-box (FGSM) attacks.

2nd last col: same 0.3 used for adversarial example generation.

Last 2 columns: large variance in performance.

‘A/B’: use adversarial examples generated by classifier B to
attack classifier A

‘Defense-GAN-Rec/Orig’: use GAN-reconstructed or the
original images to train classifier
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Defense GAN: result

Outperforms others in defending white-box attacks

Reconstructed data from G contain little adversarial noise!

Tables and figures here and in prev 3 slides from Samangouei et al., “Defense-GAN: protecting classifiers against
adversarial attacks using generative models”, ICLR, 2018
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The game is far from over...

Left: universal adversarial perturbation

Right: one pixel attack for fooling deep neural networks

Moosavi-Dezfooli & Fawzi, CVPR 2017; Su et al., arXiv 2017
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Summary

Adversarial examples put serious challenges to security and
robustness of DL models (and other machine learning models)

Multi-round attack-vs-defense game is running

The game would help understand weakness of current DL
models, and help develop more robust and innovative models

Further reading:

Madry et al., ‘Towards deep learning models resistant to adversarial
attacks’, arXiv, 2017

Qin et al., ‘Imperceptible, robust, and targeted adversarial examples
for automatic speech recognition’, ICML, 2019
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