Week 12: Memory networks

Instructor: Ruixuan Wang wangruix5@mail.sysu.edu.cn

School of Data and Computer Science Sun Yat-Sen University

16 May, 2019

- Memory network
- 2 Dynamic memory network
- 3 Key-value memory network
- Recurrent entity network
- **5** Neural Turing machine

Question answering (QA)

- Question answering: given a set (sequence) of facts and a question, predict the answer
- Facts (sentences), question (sentence) and answer (word)

Question answering (QA)

•0000000

- Question answering: given a set (sequence) of facts and a question, predict the answer
- Facts (sentences), question (sentence) and answer (word)
- bAbl dataset: 20 toy tasks, with different types

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 20: Agent's Motivations

John is hungry.

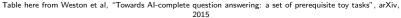
John goes to the kitchen.

John grabbed the apple there.

Daniel is hungry.

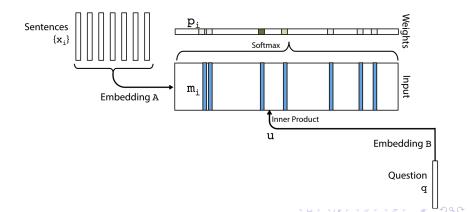
Where does Daniel go? A:kitchen

Why did John go to the kitchen? A:hungry



- Embed a collection of facts (i.e., sentences)
- Compute an attention depending on a query (i.e., question)

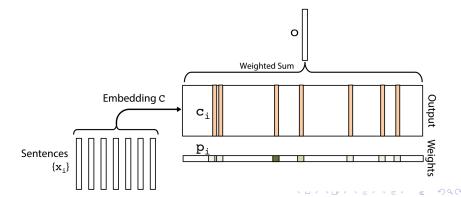
$$p_i = \mathsf{Softmax}(\mathbf{u}^T \mathbf{m}_i)$$



(Intermediate) output is weighted sum of the fact embeddings

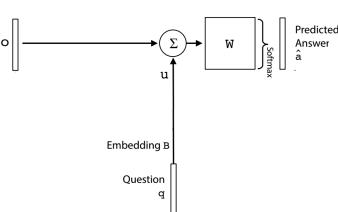
$$\mathbf{o} = \sum_{i} p_{i} \mathbf{c}_{i}$$

Input embedding is different from output embedding

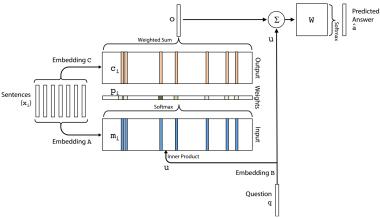


- The output o is then used as input to classifier
- Question embedding is also part of input to classifier

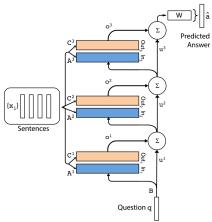
$$\hat{\mathbf{a}} = \mathsf{Softmax}(\mathbf{W}(\mathbf{o} + \mathbf{u}))$$



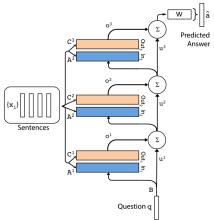
- Model parameters: embeddings A, B,C; dense output layer
- $\hat{\mathbf{a}}$ Trained by minimizing a cross-entropy loss between prediction $\hat{\mathbf{a}}$ and the true label $\hat{\mathbf{a}}$



• Several 'hops' of 'reasoning' to produce the right answer



- Several 'hops' of 'reasoning' to produce the right answer
- Embedding layers can be tied: $A_1 = A_2 = A_3$, $C_1 = C_2 = C_3$, making it similar to a RNN



- Trained end-to-end from (Facts+Questions) to (Answers)
- Attented fact at each hop may be changed during inference

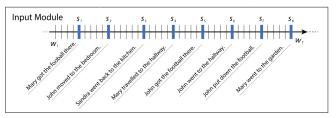
Story (2: 2 supporting facts)	Support	Hop 1	Hop 2	Hop 3
John dropped the milk.		0.06	0.00	0.00
John took the milk there.	yes	0.88	1.00	0.00
Sandra went back to the bathroom.		0.00	0.00	0.00
John moved to the hallway.	yes	0.00	0.00	1.00
Mary went back to the bedroom.		0.00	0.00	0.00
Where is the milk? Answer: hallway	Prediction: hallway			

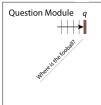
Story (18: size reasoning) Suppo		Hop 1	Hop 2	Нор 3	
The suitcase is bigger than the chest.	yes	0.00	0.88	0.00	
The box is bigger than the chocolate.		0.04	0.05	0.10	
The chest is bigger than the chocolate.	yes	0.17	0.07	0.90	
The chest fits inside the container.		0.00	0.00	0.00	
The chest fits inside the box.		0.00	0.00	0.00	
Does the suitcase fit in the chocolate? Answer: no Prediction: no					

Limitation of the memory network

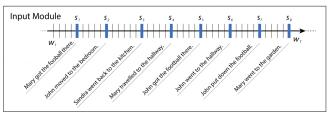
It did not consider temporal order between sentences

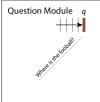
- Multiple facts (sentences) are connected (by 'end-of-sentence' token) into a single longer sequence
- A GRU RNN generates representation S_i for each sentence



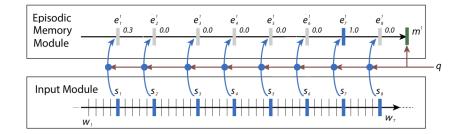


- Multiple facts (sentences) are connected (by 'end-of-sentence' token) into a single longer sequence
- A GRU RNN generates representation S_i for each sentence
- ullet 2nd GRU generates representation ${f q}$ for Question sentence

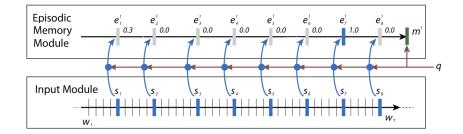




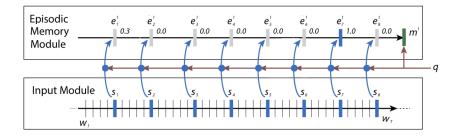
• Attention (blue arrows & values nearby) by a 2-layer network



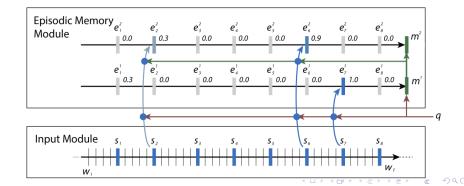
- Attention (blue arrows & values nearby) by a 2-layer network
- \bullet Episode \mathbf{e}_t by a modified 3^{rd} GRU, with attention as gate to tune GRU output
- Episode at final time step represents attended (relevant) facts



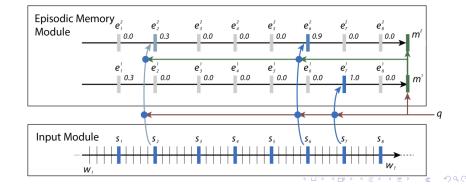
- Attention (blue arrows & values nearby) by a 2-layer network
- \bullet Episode \mathbf{e}_t by a modified 3^{rd} GRU, with attention as gate to tune GRU output
- Episode at final time step represents attended (relevant) facts
- ullet 4th GRU generates episode memory f m (e and f q as input)



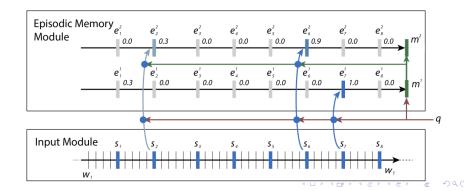
• There are multiple 'passes' (iterations) in episodic memory



- There are multiple 'passes' (iterations) in episodic memory
- ullet In 2^{nd} pass: attention takes prev episodic memory ${f m}^1$ as input



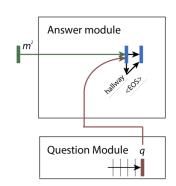
- There are multiple 'passes' (iterations) in episodic memory
- ullet In 2^{nd} pass: attention takes prev episodic memory ${f m}^1$ as input
- ullet \mathbf{m}^1 as input to 4^{th} GRU for updated episodic memory \mathbf{m}^2
- ullet m should contain all information to answer question ${f q}$
- Note: only higher attention (blue arrows) were drawn



- ullet 5 GRU generates answer; episodic memory ${f m}$ as initial state
- Concatenate last generated word and question vector as input

$$y_t = \operatorname{softmax}(W^{(a)}a_t)$$

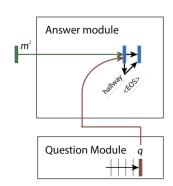
 $a_t = GRU([y_{t-1}, q], a_{t-1})$



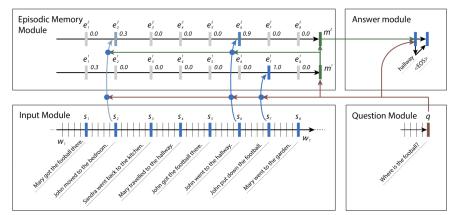
- ullet 5 GRU generates answer; episodic memory ${f m}$ as initial state
- Concatenate last generated word and question vector as input
- ullet Trained with cross-entropy loss between (predicted single y_t or sequence $\{y_t\}$) and (correct word/sequence)

$$y_t = \operatorname{softmax}(W^{(a)}a_t)$$

 $a_t = GRU([y_{t-1}, q], a_{t-1})$



- DMN capture information of position and temporality
- The entire DMN can be trained end-to-end



 Episodic memory module helps iteratively retrieve and store facts, gradually incorporating more relevant information

Max	task 3	task 7	task 8
passes	three-facts	count	lists/sets
0 pass	0	48.8	33.6
1 pass	0	48.8	54.0
2 pass	16.7	49.1	55.6
3 pass	64.7	83.4	83.4
5 pass	95.2	96.9	96.5

Limitations of dynamic memory network

- DMN requires supporting facts (i.e., the facts that are relevant for answering a particular question) are labeled during training
- DMN did not work well on bAbl-10k without supporting facts

Limitations of dynamic memory network

- DMN requires supporting facts (i.e., the facts that are relevant for answering a particular question) are labeled during training
- DMN did not work well on bAbl-10k without supporting facts
- Reason 1: when encoding a fact, not use future sentences
- Reason 2: in input module, word-level GRU does not allow for distant supporting sentences to interact with each other

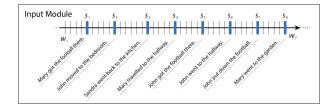
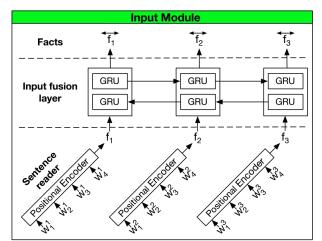


Figure in next 2 slides from Xiong, Merity, Socher, "Dynamic memory networks for visual and textual question answering", ICML, 2016

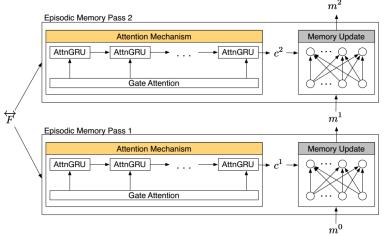
DMN+: improved dynamic memory network

- Two-level encoding of facts (sequences)
- Input fusion layer allows information flow between sentences



DMN+: improved dynamic memory network

- Attention score is used inside GRU at each time step
- Memory update: ReLU of linear embedding, unique per pass

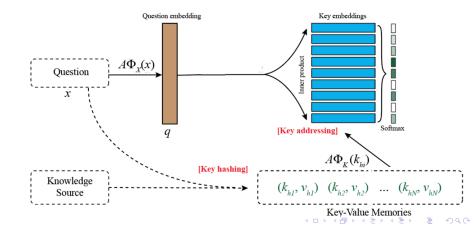


Extending memory networks

There are other ways to extend memory networks!

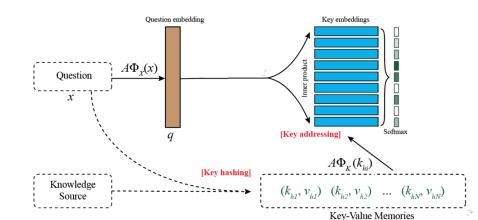
• Key-value memory: e.g., key is a window of words in doc, value is the centre word in window or title of doc, etc.

- Key-value memory: e.g., key is a window of words in doc, value is the centre word in window or title of doc, etc.
- Key hashing for subset where Key shares word with Question



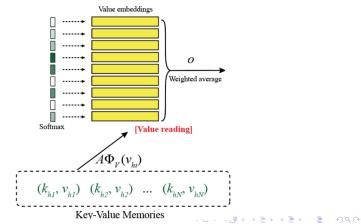
- \bullet Φ_X , Φ_K : predefined sentence coding; \mathbf{A} : embedding
- Key addressing computes an attention depending on Question

$$p_{h_i} = \mathsf{Softmax}(\mathbf{A}\mathbf{\Phi}_X(\mathbf{x}) \cdot \mathbf{A}\mathbf{\Phi}_K(\mathbf{k}_{h_i}))$$



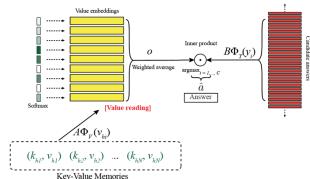
Value reading outputs weighted sum of value embeddings

$$\mathbf{o} = \sum_{i} p_{h_i} \mathbf{A} \mathbf{\Phi}_V(\mathbf{v}_{h_i})$$



• Select from candidate answers $\{y_i\}$ which are all possible answer words or sentences by matching o (which contains answer information):

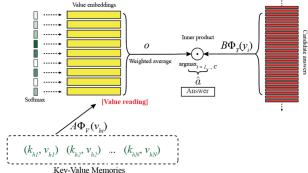
$$\hat{a} = \arg \max_{i=1,\dots,C} \mathsf{Softmax}(\mathbf{o}^T \mathbf{B} \mathbf{\Phi}_Y(\mathbf{y}_i))$$



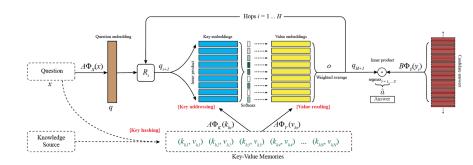
• Select from candidate answers $\{y_i\}$ which are all possible answer words or sentences by matching o (which contains answer information):

$$\hat{a} = \arg \max_{i=1,\dots,C} \mathsf{Softmax}(\mathbf{o}^T \mathbf{B} \mathbf{\Phi}_Y(\mathbf{y}_i))$$

This is another difference from standard memory network

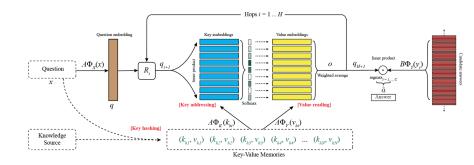


• Addressing and reading can be repeated ('Hops'), each time with updated query (question embedding) $\mathbf{q}_{i+1} = \mathbf{R}_i(\mathbf{q}_i + \mathbf{o}_i)$



Key-value memory network

- Addressing and reading can be repeated ('Hops'), each time with updated query (question embedding) $\mathbf{q}_{i+1} = \mathbf{R}_i(\mathbf{q}_i + \mathbf{o}_i)$
- ullet Model parameters: ${f A}, {f B}, {f R}_1, \ldots, {f R}_H$
- Train: cross entropy loss between predicted and true answers



Key-value memory network

Model is better than others on WikiQA and MOVIEQA sets

Doc: Wikipedia Article for Blade Runner (partially shown)

Blade Runner is a 1982 American neo-noir dystopian science fiction film directed by Ridley Scott and starring Harrison Ford, Rutger Hauer, Sean Young, and Edward James Olmos. The screenplay, written by Hampton Fancher and David Peoples, is a modified film adaptation of the 1968 novel "Do Androids Dream of Electric Sheep?" by Philip K. Dick. The film depicts a dystopian Los Angeles in November 2019 in which genetically engineered replicants, which are visually indistinguishable from adult humans, are manufactured by the powerful Tyrell Corporation as well as by other "mega-corporations" around the world. Their use on Earth is banned and replicants are exclusively used for dangerous, menial, or leisure work on off-world colonies. Replicants who defy the ban and return to Earth are hunted down and "retired" by special police operatives known as "Blade Runners"....

Ouestions for Blade Runner (subset)

Ridley Scott directed which films?

What year was the movie Blade Runner released?

Who is the writer of the film Blade Runner?

Which films can be described by dystopian? Which movies was Philip K. Dick the writer of?

Can you describe movie Blade Runner in a few words?

How does human read and understand a story?

- The ability to maintain and update the state of the world is a key feature of intelligent agents!
 - 1. 'Mary picked up the ball.'
 - 2. 'Mary went to the garden.'

How does human read and understand a story?

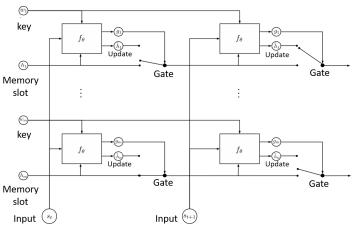
- The ability to maintain and update the state of the world is a key feature of intelligent agents!
 - 1. 'Mary picked up the ball.'
 - 2. 'Mary went to the garden.'
- Explicitly maintain a set of high-level concepts or entities together with their properties, which are updated as new information is received

Figures in previous 6 slides from Miller et al., "Key-value memory networks for directly reading documents", arXiv, 2016

Figures in next 6 slides from Henaff, Weston, Szlam, Bordes, LeCun, "Tracking the world state with recurrent entity networks", ICLR, 2017

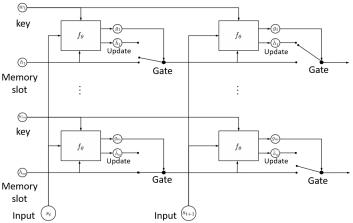
Recurrent entity network

ullet Multiple $(5\sim20)$ dynamic memory cells: (key ${f w}_j$, value ${f h}_j$)'s



Recurrent entity network

- ullet Multiple $(5\sim20)$ dynamic memory cells: (key ${f w}_j$, value ${f h}_j$)'s
- Novelty 1: each cell is associated with its own 'processor', a gated recurrent network that update cell value given an input



Recurrent entity network: dynamic memory

- Each cell stores state of one entity (e.g., objects, persons)
- The j^{th} network independently uses a key \mathbf{w}_j and the t^{th} input sentence \mathbf{s}_t to update the memory \mathbf{h}_j at time step t

$$\begin{array}{lcl} \mathbf{g}_{j,t} & = & \sigma(\mathbf{s}_t^T \mathbf{h}_{j,t-1} + \mathbf{s}_t^T \mathbf{w}_j) \\ \tilde{\mathbf{h}}_{j,t} & = & \phi(\mathbf{U}\mathbf{h}_{j,t-1} + \mathbf{V}\mathbf{w}_j + \mathbf{W}\mathbf{s}_t) \\ \mathbf{h}_{j,t} & = & \mathbf{h}_{j,t-1} + \mathbf{g}_{j,t} \odot \tilde{\mathbf{h}}_{j,t} \\ \mathbf{h}_{j,t} & \leftarrow & \frac{\mathbf{h}_{j,t}}{\|\mathbf{h}_{i,t}\|} \end{array}$$

Recurrent entity network: dynamic memory

- Each cell stores state of one entity (e.g., objects, persons)
- The j^{th} network independently uses a key \mathbf{w}_j and the t^{th} input sentence \mathbf{s}_t to update the memory \mathbf{h}_j at time step t
- Keys $\{\mathbf{w}_j\}$ can be learned as parameters, or entity words in doc or candidate answers
- ullet U, f V, f W are shared by all gated recurrent networks
- L₂ norm helps forget old memory

$$\mathbf{g}_{j,t} = \sigma(\mathbf{s}_t^T \mathbf{h}_{j,t-1} + \mathbf{s}_t^T \mathbf{w}_j)$$

$$\tilde{\mathbf{h}}_{j,t} = \phi(\mathbf{U}\mathbf{h}_{j,t-1} + \mathbf{V}\mathbf{w}_j + \mathbf{W}\mathbf{s}_t)$$

$$\mathbf{h}_{j,t} = \mathbf{h}_{j,t-1} + \mathbf{g}_{j,t} \odot \tilde{\mathbf{h}}_{j,t}$$

$$\mathbf{h}_{j,t} \leftarrow \frac{\mathbf{h}_{j,t}}{\|\mathbf{h}_{j,t}\|}$$

Recurrent entity network: gate function

ullet Novelty 2: input \mathbf{s}_t directly interacts with \mathbf{w}_j and memory \mathbf{h}_j

$$\mathbf{g}_{j,t} = \sigma(\mathbf{s}_t^T \mathbf{h}_{j,t-1} + \mathbf{s}_t^T \mathbf{w}_j)$$

Recurrent entity network: gate function

- ullet Novelty 2: input \mathbf{s}_t directly interacts with \mathbf{w}_j and memory \mathbf{h}_j
- ullet The gate function $\mathbf{g}_{j,t}$ contains two terms
- 'Content' term $\mathbf{s}_t^T\mathbf{h}_{j,t-1}$ cause gate to open for memory slots whose content $\mathbf{h}_{j,t-1}$ matches the input
- 'Location' term $\mathbf{s}_t^T \mathbf{w}_j$ cause gate to open for memory slots whose key \mathbf{w}_j matches the input

$$\mathbf{g}_{j,t} = \sigma(\mathbf{s}_t^T \mathbf{h}_{j,t-1} + \mathbf{s}_t^T \mathbf{w}_j)$$

Recurrent entity network: gate function

- ullet Novelty 2: input \mathbf{s}_t directly interacts with \mathbf{w}_j and memory \mathbf{h}_j
- ullet The gate function ${f g}_{j,t}$ contains two terms
- 'Content' term $\mathbf{s}_t^T\mathbf{h}_{j,t-1}$ cause gate to open for memory slots whose content $\mathbf{h}_{j,t-1}$ matches the input
- 'Location' term $\mathbf{s}_t^T \mathbf{w}_j$ cause gate to open for memory slots whose key \mathbf{w}_j matches the input

$$\mathbf{g}_{j,t} = \sigma(\mathbf{s}_t^T \mathbf{h}_{j,t-1} + \mathbf{s}_t^T \mathbf{w}_j)$$

 Memories are updated only when new information relevant to their concepts are received, and remains otherwise unchanged

$$\mathbf{h}_{j,t} = \mathbf{h}_{j,t-1} + \mathbf{g}_{j,t} \odot \tilde{\mathbf{h}}_{j,t}$$

 1^{st} : 'Mary picked up the ball.'; 2^{nd} : 'Mary went to the garden.'

 1^{st} : 'Mary picked up the ball.'; 2^{nd} : 'Mary went to the garden.'

- Two gated networks (memories) for states of 'Mary' and 'ball'.
- ullet Key \mathbf{w}_1 for entity 'Mary'; \mathbf{w}_2 for entity 'Ball'

- 1^{st} : 'Mary picked up the ball.'; 2^{nd} : 'Mary went to the garden.'
 - Two gated networks (memories) for states of 'Mary' and 'ball'.
 - ullet Key \mathbf{w}_1 for entity 'Mary'; \mathbf{w}_2 for entity 'Ball'
- 1^{st} time step: \mathbf{s}_1 encoding 'Mary picked up the ball.'
 - ullet Location term $\mathbf{s}_1^T\mathbf{w}_1$ would open gates of memory 'Mary'
 - ullet Location term $\mathbf{s}_1^T \mathbf{w}_2$ would open gates of memory 'ball'.
 - \bullet Updated state $\mathbf{h}_{1,1}$ of 'Mary' entity: she is carrying the ball
 - ullet Updated state $\mathbf{h}_{2,1}$ of 'ball' entity: it is carried by Mary

 1^{st} : 'Mary picked up the ball.'; 2^{nd} : 'Mary went to the garden.'

- Two gated networks (memories) for states of 'Mary' and 'ball'.
- ullet Key \mathbf{w}_1 for entity 'Mary'; \mathbf{w}_2 for entity 'Ball'

 1^{st} time step: \mathbf{s}_1 encoding 'Mary picked up the ball.'

- ullet Location term $\mathbf{s}_1^T\mathbf{w}_1$ would open gates of memory 'Mary'
- ullet Location term $\mathbf{s}_1^T\mathbf{w}_2$ would open gates of memory 'ball'.
- ullet Updated state $\mathbf{h}_{1,1}$ of 'Mary' entity: she is carrying the ball
- ullet Updated state $\mathbf{h}_{2,1}$ of 'ball' entity: it is carried by Mary

 2^{nd} time step: s_2 encoding 'Mary went to the garden.'

- Both content term $\mathbf{s}_2^T\mathbf{h}_{1,1}$ and location term $\mathbf{s}_2^T\mathbf{w}_1$ help update 'Mary' entity: she is now in the garden
- Content term $\mathbf{s}_2^T \mathbf{h}_{2,1}$ would open gate of 'ball', even though the word 'ball' does not occur in the second sentence.
- Why: infor for 'Mary' is in 'ball' memory from 1st time step,

Recurrent entity network: input and output modules

Input module:

• \mathbf{e}_i : i^{th} word in t^{th} input sequence; \mathbf{f}_i : model parameters

$$\mathbf{s}_t = \Sigma_i \mathbf{f}_i \odot \mathbf{e}_i$$

Output module:

- q: query (question) vector; R and H: model parameters
- Attention mechanism (p_j) is adopted as well

$$p_j = \operatorname{Softmax}(\mathbf{q}^T \mathbf{h}_j)$$

$$\mathbf{u} = \Sigma_j p_j \mathbf{h}_j$$

$$\mathbf{y} = \mathbf{R} \phi(\mathbf{q}_j + \mathbf{H}\mathbf{u})$$

Model (including previous gated networks) trained end-to-end

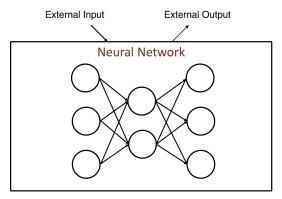
Recurrent entity network: result

• The model solved all 20 bAbl question-answering tasks

Task	NTM	D-NTM	MemN2N	DNC	DMN+	EntNe
1: 1 supporting fact	31.5	4.4	0	0	0	0
2: 2 supporting facts	54.5	27.5	0.3	0.4	0.3	0.1
3: 3 supporting facts	43.9	71.3	2.1	1.8	1.1	4.1
4: 2 argument relations	0	0	0	0	0	0
5: 3 argument relations	0.8	1.7	0.8	0.8	0.5	0.3
6: yes/no questions	17.1	1.5	0.1	0	0	0.2
7: counting	17.8	6.0	2.0	0.6	2.4	0
8: lists/sets	13.8	1.7	0.9	0.3	0.0	0.5
9: simple negation	16.4	0.6	0.3	0.2	0.0	0.1
10: indefinite knowledge	16.6	19.8	0	0.2	0	0.6
11: basic coreference	15.2	0	0.0	0	0.0	0.3
12: conjunction	8.9	6.2	0	0	0.2	0
13: compound coreference	7.4	7.5	0	0	0	1.3
14: time reasoning	24.2	17.5	0.2	0.4	0.2	0
15: basic deduction	47.0	0	0	0	0	0
16: basic induction	53.6	49.6	51.8	55.1	45.3	0.2
17: positional reasoning	25.5	1.2	18.6	12.0	4.2	0.5
18: size reasoning	2.2	0.2	5.3	0.8	2.1	0.3
19: path finding	4.3	39.5	2.3	3.9	0.0	2.3
20: agent's motivation	1.5	0	0	0	0	0
Failed Tasks (> 5% error):	16	9	3	2	1	0
Mean Error:	20.1	12.8	4.2	3.8	2.8	0.5

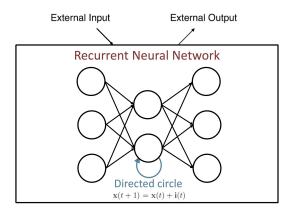
Before neural Turing machine

Feedforward networks process input, then generate output



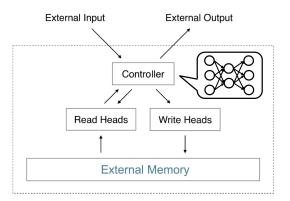
Before neural Turing machine

RNN did similarly, with recurrent connections inside



Neural Turing machine

 Neural Turing machine uses controller (either feed-forward or RNN) to read from and write to external memory, then generate output from the read result.



Neural Turing machine: reading and writing

- Memory ${\bf M}$ is $N \times M$: N locations, M elements per location
- $\mathbf{w}_t = (w_t(0), \dots, w_t(N-1))$: reading weight, from read head
- ullet \mathbf{r}_t : weighted row vectors in memory; returned by read head

$$\sum_{i} w_{t}(i) = 1, \quad 0 \le w_{t}(i) \le 1, \ \forall i$$
$$\mathbf{r}_{t} \longleftarrow \sum_{i} w_{t}(i) \mathbf{M}_{t}(i)$$

Neural Turing machine: reading and writing

- Memory ${\bf M}$ is $N \times M$: N locations, M elements per location
- $\mathbf{w}_t = (w_t(0), \dots, w_t(N-1))$: reading weight, from read head
- \bullet \mathbf{r}_t : weighted row vectors in memory; returned by read head

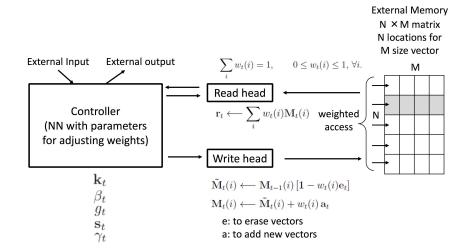
$$\sum_{i} w_{t}(i) = 1, \quad 0 \le w_{t}(i) \le 1, \ \forall i$$
$$\mathbf{r}_{t} \longleftarrow \sum_{i} w_{t}(i) \mathbf{M}_{t}(i)$$

- ullet From write head: weight \mathbf{w}_t , erase vector \mathbf{e}_t , add vector \mathbf{a}_t
- Fine-grained control over elements in each memory location

$$\tilde{\mathbf{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[\mathbf{1} - w_t(i) \mathbf{e}_t \right]$$

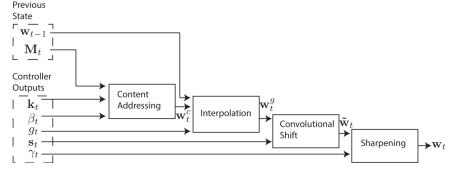
$$\mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \mathbf{a}_t$$

Neural Turing machine: reading and writing



How to generate read weight and write information?

- ullet Content-based addressing: attended to locations where memory content is similar to values ${f k}_t$ emitted by controller
- Location-based: by rotationally shifting elements of a weight
- Can be combined, also with interpolation and sharpening



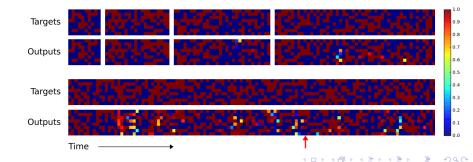
Figures here and in next slide from Graves, Wayne, Danihelka, "Neural Turing machines", arXiv, 2014

Neural Turing machine: result

- Model parameters are mainly in Controller; trained end-to-end
- Trained to copy sequence (length up to 20) of 8-bit random vectors; tested on sequences of length 10, 20, 30, 50, 120

Neural Turing machine: result

- Model parameters are mainly in Controller; trained end-to-end
- Trained to copy sequence (length up to 20) of 8-bit random vectors; tested on sequences of length 10, 20, 30, 50, 120
- NTM can copy longer sequences (below); while LSTM not
- NTM can infer simple algorithms like copying, sorting, etc.



Summary

- Memory networks often contain external memory module
- Memory networks can be trained end-to-end
- Dynamic memory networks consider sentence order
- Key-value network is more flexible than memory networks
- Recurrent entity networks can directly update entities' states
- Neural Turing machine can infer simple algorithms
- Focus is how to generate and use memory information

Further reading:

- Graves et al., 'Hybrid computing using a neural network with dynamic external memory', Nature, 2016
- Chandar et al., 'Hierarchical memory networks', ICLR, 2017

