▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Week 11: Recurrent Neural Networks 2

Instructor: Ruixuan Wang wangruix5@mail.sysu.edu.cn

School of Data and Computer Science Sun Yat-Sen University

09 May, 2019

1 Machine translation

Encoder-decoder model

• Encoder: encode a source sequence into a fixed-length vector

Encoder-decoder (cont')

• Decoder: encoder's last hidden state as initial hidden input

Encoder-decoder (cont')

Decoder and encoder are often two different LSTMs

Encoder-decoder (cont')

• Decoder has two inputs at each step!

Machine translation

Attention mechanism

Chatbot 00000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Encoder-decoder for machine translation

• Why output at prev time step as current input in decoder?

Attention mechanism

Chatbot 00000000000000

Encoder-decoder for machine translation

- Why output at prev time step as current input in decoder?
- Review: conditional language model assigns probability to a sequence of words $\mathbf{y} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_l)$ given condition \mathbf{x}

$$p(\mathbf{y}|\mathbf{x}) = \prod_{t=1}^{l} p(\mathbf{w}_t|\mathbf{x}, \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{t-1})$$

• x: original sentence; y: translated sentence Figures in prev 4 slides from https://m2dsupsdlclass.github.io/lectures-labs; figures in next 2 slides from Dyer, Oxford NLP course Lecture 7, 2017

Machine translation: training

• Train encoder-decoder $p_{\theta}(\cdot)$ by maximizing the log probability of correct translation y given the source sentence x, i.e., maximizing the following objective function

$$\frac{1}{|\mathcal{D}|}\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}}\log p_{\pmb{\theta}}(\mathbf{y}|\mathbf{x})$$

Machine translation: training tricks

- Encoder reads source sequence 'backward': first read last word
- It improves both short and long sentence translations

- Multiple (e.g., 4) layers of LSTMs for both encoder & decoder
- An ensemble of independently trained encoder-decoders

Encoder output is meaningful

• After training, sentences with similar meanings are close to each other in the encoder's feature space

Figure from Sutskever, Vinyals, Le, "Sequence to sequence learning with neural networks", NIPS, 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Machine translation: inference

• Once training is finished, given a new source sentence x, the model $p_{\theta}(\cdot)$ can produce the translation

$$\mathbf{y}^{*} = \arg \max_{\mathbf{y}} p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})$$
$$= \arg \max_{\mathbf{y}} \sum_{t=1}^{|\mathbf{y}|} \log p_{\boldsymbol{\theta}}(\mathbf{w}_{t}|\mathbf{x}, \mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{t-1})$$

Machine translation: inference

• Once training is finished, given a new source sentence x, the model $p_{\theta}(\cdot)$ can produce the translation

$$\mathbf{y}^{*} = \arg \max_{\mathbf{y}} p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})$$
$$= \arg \max_{\mathbf{y}} \sum_{t=1}^{|\mathbf{y}|} \log p_{\boldsymbol{\theta}}(\mathbf{w}_{t}|\mathbf{x}, \mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{t-1})$$

 \bullet How to find the best translation \mathbf{y}^* efficiently? Greedy search

$$\mathbf{w}_{1}^{*} = \arg \max_{\mathbf{w}_{1}} p_{\boldsymbol{\theta}}(\mathbf{w}_{1} | \mathbf{x})$$

$$\mathbf{w}_{2}^{*} = \arg \max_{\mathbf{w}_{2}} p_{\boldsymbol{\theta}}(\mathbf{w}_{2} | \mathbf{x}, \mathbf{w}_{1}^{*})$$

$$\vdots$$

$$\mathbf{w}_{t}^{*} = \arg \max_{\mathbf{w}_{t}} p_{\boldsymbol{\theta}}(\mathbf{w}_{t} | \mathbf{x}, \mathbf{w}_{1}^{*}, \mathbf{w}_{2}^{*}, \dots, \mathbf{w}_{t-1}^{*})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beam search

• Beam search: keep track of top K hypotheses (translated partial sequences so far) at each time step!

 w_3

Beam search

- Beam search: keep track of top K hypotheses (translated partial sequences so far) at each time step!
- Example: K = 2; first input to decoder is a starting token
- $x = Bier \ trinke \ ich$ beer drink I

⟨s⟩ logprob=0

 $w_0 \qquad w_1 \qquad w_2$

Figures here and in next 7 slide from Dyer, Oxford NLP course Lecture 7, 2017

Beam search (cont')

• 1^{st} time step: keep $K=2 \mbox{ most likely words which have higher log probability}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 w_3

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beam search (cont')

• 2^{nd} time step: for each kept word at 1^{st} time step, proceed to produce K = 2 most likely words

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beam search (cont')

• 2^{nd} time step: for each kept word at 1^{st} , proceed to produce K = 2 most likely words

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beam search (cont')

- 2^{nd} time step: only keep K = 2 words with higher log prob
- Note: log probability is for each partial sequence of words

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beam search (cont')

• 3rd time step: for each kept word at previous step, repeat the process as above

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beam search (cont')

• 3^{rd} time step: again only keep K = 2 words with higher log probability

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beam search (cont')

• Once producing 'end of sentence' token, select the best sequence with higher log probability (from K sequences)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Issue of encoder-decoder model

Problem:

- Whole source sentence is represented as a fixed-length vector
- This makes the network difficult to cope with long sentences
- Also, a sentence may have different parts with different concepts. e.g., 'I like apples but I don't like orange'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Issue of encoder-decoder model

Problem:

- Whole source sentence is represented as a fixed-length vector
- This makes the network difficult to cope with long sentences
- Also, a sentence may have different parts with different concepts. e.g., 'I like apples but I don't like orange'

Solution:

- Use outputs of encoder at all time steps.
- Build an attention mechanism to determine which outputs of the encoder to attend to during translation.

Attention mechanism

- Goal: select most relevant vector(s) given context \mathbf{c}
- h_i contains information with a strong focus on the parts surrounding the i^{th} word of the input sequence
- $\bullet \ {\bf c}$ may be decoder's hidden output at one time step

$\{h_i\}$ vectors to attend to

c context

Figures here and in the next 7 slides from https://m2dsupsdlclass.github.io//lectures-labs , \equiv , \equiv ,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\alpha_i = \frac{\exp(e_i)}{\sum_k \exp(e_k)}$$

- $f(\cdot)$ may be a consine similarity, a deep network, etc.
- softmax enables to normalize and focus on very few items

3

$$e_i = f(h_i, \mathbf{c})$$
$$\alpha_i = \frac{\exp(e_i)}{\sum_k \exp(e_k)}$$

- $f(\cdot)$ may be a consine similarity, a deep network, etc.
- softmax enables to normalize and focus on very few items
- α_i represents degree of 'attention' to region around the ith location in the input sequence, or the importance of the region in predicting the next word during translation.

Attention mechanism

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- z: a soft (differentiable) selection on a set of words in the input sequence
- z helps predict next word during translation

Machine translation

• Predict 1^{st} word by decoder: z_0 as input to decoder is the soft selection of source words' representations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Chatbot

• 'Attention' is computed by matching a default context '0' with the hidden state at each time step in encoder

• Predict 2^{nd} word: compute attention to each source word with 'context' being h_0^{dec}

• Predict 3^{rd} word: compute attention to each source word with 'context' being h_1^{dec}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

English-French translation result

- x-axis: source sentence (English); y-axis: target sentence
- \bullet Each pixel: $\alpha_{i,j}\text{,}$ weight of j^{th} source word for i^{th} target word

Figure from Bahdanau, Cho, Bengio, "Neural machine translation by jointly learning to align and translate", ICLR, 2015

Poetry generation: another application of attention

- Goal: generate poem, given a query sentence/words
- Two steps: first key words, then lines for each key words

Figures here and in next 4 slides from Wang et al., "Chinese poetry generation with planning based neural network", arXiv, 2016

Poetry generation

- Bidirectional GRU for encoder and decoder
- For each line: both key word and previous lines are encoded by encoder for attention computation

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Poetry generation: training

• Train model by maximizing log-likelihood of training corpus

$$\arg \max \sum_{n=1}^{N} log P(\mathbf{y_n} | \mathbf{x_n}, \mathbf{k_n})$$

Keyword	The Preceding Text	Current Line
床	_	床前明月光
霜	床前明月光	疑是地上霜
明月	床前明月光;疑是地上霜	举头望明月
故乡	床前明月光;疑是地上霜;举头望明月	低头思故乡

• Element of 1^{st} column: \mathbf{k}_n ; 2^{nd} column: \mathbf{x}_n ; 3^{rd} column: \mathbf{y}_n

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Poetry generation: result

• Which poem is generated by model?

秋夕湖上	秋夕湖上
By a Lake at Autumn Sunset	By a Lake at Autumn Sunset
一夜秋凉雨湿衣,	荻花风里桂花浮,
A cold autumn rain wetted my clothes last night, 西窗独坐对夕晖。	The wind blows reeds with osmanthus flying, 恨竹生云翠欲流。
And I sit alone by the window and enjoy the sunset. 湖波荡漾千山色,	And the bamboos under clouds are so green as if to flow down. 谁拂半湖新镜面,
With mountain scenery mirrored on the rippling lake, 山鸟徘徊万籁微。	The misty rain ripples the smooth surface of lake, 飞来烟雨暮天愁。
A silence prevails over all except the hovering birds.	And I feel blue at sunset .

Poetry generation: result

- Which poem is generated by model?
- Enjoy poems with modern title

秋夕湖上		秋夕湖上
By a Lake at Autumn Sunset		By a Lake at Autumn Sunset
一夜秋凉雨湿衣,		荻花风里桂花浮,
A cold autumn rain wetted my clothes last night, 西窗独坐对夕晖。		e wind blows reeds with osmanthus flying, 恨竹生云翠欲流。
And I sit alone by the window and enjoy the sunset. And the ba 湖波荡漾千山色,		nboos under clouds are so green as if to flow down. 谁拂半湖新镜面,
With mountain scenery mirrored on the rippling lake, The: 山鸟徘徊万籁微。		misty rain ripples the smooth surface of lake, 飞来烟雨幕天愁。
A silence prevails over all except the hovering birds.	And I feel blue at sunset .	
啤酒		冰心
Beer		Xin Bing
今宵啤酒两三缸,		一片冰心向月明,
I drink glasses of beer tonight, 杯底香醇琥珀光。		I open up my pure heart to the moon, 千山春水共潮生。
With the bottom of the glass full of aroma and amber light. 清爽金风凉透骨,		With the spring river flowing past mountains. 繁星闪烁天涯路,
Feeling cold as the autumn wind blows, 醉看明月挂西窗。		Although my future is illuminated by stars, 往事萦怀梦里行。
I get drunk and enjoy the moon in sight by the west window.		The past still lingers in my dream.

Machine translation

Attention mechanism

Chatbot ●00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dialogue: another application of RNNs

Machine translation vs. Dialogue (chatbot) Which is more difficult?

Dialogue model: HRED

• Dialogue: a sequence of utterances (sentences)

Dialogue model: HRED

- Dialogue: a sequence of utterances (sentences)
- Hierarchical recurrent encoder-decoder: 3 RNNs, 2 levels

Machine translation

Attention mechanism

Chatbot ○○●○○○○○○○○○

HRED model (cont')

 Context RNN (blue) encode temporal information among multiple sentences (utterances); easier for gradient flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

HRED model (cont')

- Context RNN can represent common ground between speakers, e.g., topics or concepts shared between speakers
- Context encoder output as input for each step of decoder

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

HRED model (cont')

- Context RNN can represent common ground between speakers, e.g., topics or concepts shared between speakers
- Context encoder output as input for each step of decoder
- Other trick 1: train word embedding model with other data
- Other trick 2: pretrain RNN with non-dialogue corpus

 However, most predictions are too generic, like 'I don't know' or 'I am sorry'

- However, most predictions are too generic, like 'I don't know' or 'I am sorry'
- Reason 1: generic utterances appear often in training set

- However, most predictions are too generic, like 'I don't know' or 'I am sorry'
- Reason 1: generic utterances appear often in training set
- Reason 2: many words are punctuation marks or pronouns, making context RNN difficult to learn topics/concepts

- However, most predictions are too generic, like 'I don't know' or 'I am sorry'
- Reason 1: generic utterances appear often in training set
- Reason 2: many words are punctuation marks or pronouns, making context RNN difficult to learn topics/concepts
- Reason 3: Injections to context RNN is from encoder outputs which largely encode local structure of a sentence, making context RNN difficult to capture structures of whole sentences

VHRED: Variational HRED

• Introduce a latent variable \mathbf{z} whose distribution is Gaussian

Machine translation

Attention mechanism

Chatbot 00000●000000

VHRED: Variational HRED

- Introduce a latent variable z whose distribution is Gaussian
- \bullet Concatenate $\mathbf z$ and output of context RNN for decoder

VHRED (cont')

• Mean and variance of the Gaussian are functions of all previous utterances.

$$P_{\theta}(\mathbf{z}_n \mid \mathbf{w}_1, \dots, \mathbf{w}_{n-1}) = \mathcal{N}(\boldsymbol{\mu}_{\text{prior}}(\mathbf{w}_1, \dots, \mathbf{w}_{n-1}), \boldsymbol{\Sigma}_{\text{prior}}(\mathbf{w}_1, \dots, \mathbf{w}_{n-1}))$$

Figure here and table in next slide from Serban et al., "A hierarchical latent variable encoder-decoder model generating dialogues", arXiv, 2016 () +

VHRED (cont')

• Mean and variance of the Gaussian are functions of all previous utterances.

 $P_{\theta}(\mathbf{z}_n \mid \mathbf{w}_1, \dots, \mathbf{w}_{n-1}) = \mathcal{N}(\boldsymbol{\mu}_{\text{prior}}(\mathbf{w}_1, \dots, \mathbf{w}_{n-1}), \boldsymbol{\Sigma}_{\text{prior}}(\mathbf{w}_1, \dots, \mathbf{w}_{n-1}))$

- The functions are simple feed-forward networks trained end-to-end as part of the whole network model.
- z can capture/represent high-level information like topic or sentiment of sentence.

Figure here and table in next slide from Serban et al., "A hierarchical latent variable encoder-decoder model generating dialogues", arXiv, 2016

VHRED result

- VHRED generates longer and more meaningful responses
- Dataset: Twitter Dialogue Corpus; Ubuntu Dialogue Corpus

Context	Response
jamaica blood!! <urb> \rightarrow lol. yes [name]!. [name]! \rightarrow what's poppin in toronto homie</urb>	VHRED: nothing much. just chillin. what's good with you? LSTM: something!!!!!! HRED: something!!!!!!
whhhhhyyyy is it suddenly cold in tallahassee today?? this is florida! how can i dream of the beach when my fingers are icey cold??	VHRED: the sun is shining!!! LSTM: i know!!!!!!!! HRED: something!!!!!!!
reaches for [name]! \rightarrow - approaches him warily - hey there buddy swings him into the air - how you doin? \rightarrow tilts his head and your wariness and reaches for your face [name].	VHRED: - looks up at you and smiles - you're so cute kisses your cheek - LSTM: - smiles - i'm fine thank you. how are you? HRED: - grins, looking at you as i look at you -
i think i want an ipad2. but i already have an ibook. want vs. need. \rightarrow if you have an ibook. then you deserve an ipad!	VHRED: that's what i'm thinking. i'm going to buy a new one. LSTM: i want one!!!! HRED: i don't know what to do with it. i don't know what to do.
ah echt? dan anrtwoord ik volgende keer via twitter als je me smst. \rightarrow haha doe maar p. goed bezig hoor myrthe d \rightarrow goed bezig? die snap ik even niet p	VHRED: haha, ik heb er geen zin in de something, maar ik heb er geen something meer something LSTM: haha something something something HRED: something something something something something something something
i love katie waissel more than like, anything in life. \rightarrow i wanna c the show again! i need <number> meet her again! n i want a b-day tweet nxt week doubt that will happen x</number>	VHRED: me too. i'm going to have to wait for her to come back. i'm so excited. LSTM: i'm sure she will. i'm sure she'll be fine. HRED: i'm sure she'll be fine, i'm sure she'll be fine.
my math teacher over here talkn bout nickels nd i'm tryna make big money i need to be in calculus \rightarrow lol	VHRED: i need to go to the gym and get my hair done lol LSTM: lol HRED: how u been

Issue of evaluation

• Which response is better? Response quality score 1-5

Figure here and in the next 3 slides from Serban et al., "Building end-to-end dialogue systems using generative hierarchical neural network models", AAAI, 2016 + () +

Issue of evaluation

- Which response is better? Response quality score 1-5
- Current metrics may give low score to the generated response

Figure here and in the next 3 slides from Serban et al., "Building end-to-end dialogue systems using generative hierarchical neural network models", AAAI, 2016 + () +

Issue of evaluation (cont')

• Humans rank generated responses consistently, i.e., give low score to poor responses and high score to good ones!

Figure 3: Scatter plots showing the correlation between two randomly chosen groups of human volunteers on the Twitter corpus (left) and Ubuntu Dialogue Corpus (right).

Issue of evaluation (cont')

 Scores from existing metrics (y-axis; e.g., BLEU, METEOR) are not well correlated with human scores (x-axis).

Sac

ж

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- Encoder-decoder model is popular for machine translation
- Attention mechanism can well handle longer sentences
- Poem generation by by encoder-decoder with attention
- Chatbot is on the way, difficult to evaluate

Further reading:

• Amodei et al., 'Deep Speech 2: End-to-End Speech Recognition in English and Mandarin', arXiv, 2015