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Encoder-decoder model

Encoder: encode a source sequence into a fixed-length vector
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Encoder-decoder (cont’)

Decoder: encoder’s last hidden state as initial hidden input
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Encoder-decoder (cont’)

Decoder and encoder are often two different LSTMs
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Encoder-decoder (cont’)

Decoder has two inputs at each step!
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Encoder-decoder for machine translation

Why output at prev time step as current input in decoder?

Review: conditional language model assigns probability to a
sequence of words y = (w1,w2, . . . ,wl) given condition x

p(y|x) =

l∏
t=1

p(wt|x,w1,w2, . . .wt−1)

x: original sentence; y: translated sentence
Figures in prev 4 slides from https://m2dsupsdlclass.github.io/lectures-labs; figures in next 2 slides from Dyer,

Oxford NLP course Lecture 7, 2017
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Machine translation: training

Train encoder-decoder pθ(·) by maximizing the log probability
of correct translation y given the source sentence x, i.e.,
maximizing the following objective function

1

|D|
∑

(x,y)∈D

log pθ(y|x)
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Machine translation: training tricks

Encoder reads source sequence ‘backward’: first read last word

It improves both short and long sentence translations

Multiple (e.g., 4) layers of LSTMs for both encoder & decoder

An ensemble of independently trained encoder-decoders
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Encoder output is meaningful

After training, sentences with similar meanings are close to
each other in the encoder’s feature space

Figure from Sutskever, Vinyals, Le, “Sequence to sequence learning with neural networks”, NIPS, 2014
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Machine translation: inference

Once training is finished, given a new source sentence x, the
model pθ(·) can produce the translation

y∗ = argmax
y

pθ(y|x)

= argmax
y

|y|∑
t=1

log pθ(wt|x,w1,w2, . . .wt−1)

How to find the best translation y∗ efficiently? Greedy search

w∗1 = argmax
w1

pθ(w1|x)

w∗2 = argmax
w2

pθ(w2|x,w∗1)

...

w∗t = argmax
wt

pθ(wt|x,w∗1,w∗2, . . . ,w∗t−1)
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Beam search

Beam search: keep track of top K hypotheses (translated
partial sequences so far) at each time step!

Example: K = 2; first input to decoder is a starting token

Figures here and in next 7 slide from Dyer, Oxford NLP course Lecture 7, 2017
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Beam search (cont’)

1st time step: keep K = 2 most likely words which have
higher log probability
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Beam search (cont’)

2nd time step: for each kept word at 1st time step, proceed to
produce K = 2 most likely words
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Beam search (cont’)

2nd time step: for each kept word at 1st, proceed to produce
K = 2 most likely words
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Beam search (cont’)

2nd time step: only keep K = 2 words with higher log prob

Note: log probability is for each partial sequence of words



Machine translation Attention mechanism Chatbot

Beam search (cont’)

3rd time step: for each kept word at previous step, repeat the
process as above
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Beam search (cont’)

3rd time step: again only keep K = 2 words with higher log
probability
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Beam search (cont’)

Once producing ‘end of sentence’ token, select the best
sequence with higher log probability (from K sequences)
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Issue of encoder-decoder model

Problem:

Whole source sentence is represented as a fixed-length vector

This makes the network difficult to cope with long sentences

Also, a sentence may have different parts with different
concepts. e.g., ‘I like apples but I don’t like orange’

Solution:

Use outputs of encoder at all time steps.

Build an attention mechanism to determine which outputs of
the encoder to attend to during translation.
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Attention mechanism

Goal: select most relevant vector(s) given context c

hi contains information with a strong focus on the parts
surrounding the ith word of the input sequence

c may be decoder’s hidden output at one time step

Figures here and in the next 7 slides from https://m2dsupsdlclass.github.io/lectures-labs
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f(·) may be a consine similarity, a deep network, etc.

softmax enables to normalize and focus on very few items

αi represents degree of ’attention’ to region around the ith

location in the input sequence, or the importance of the
region in predicting the next word during translation.
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z: a soft (differentiable) selection on a set of words in the
input sequence

z helps predict next word during translation
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Predict 1st word by decoder: z0 as input to decoder is the soft
selection of source words’ representations
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‘Attention’ is computed by matching a default context ‘0’
with the hidden state at each time step in encoder
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Predict 2nd word: compute attention to each source word
with ‘context’ being hdec0
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Predict 3rd word: compute attention to each source word with
‘context’ being hdec1
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English-French translation result

x-axis: source sentence (English); y-axis: target sentence

Each pixel: αi,j , weight of jth source word for ith target word

Figure from Bahdanau, Cho, Bengio, “Neural machine translation by jointly learning to align and translate”, ICLR,
2015
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Poetry generation: another application of attention

Goal: generate poem, given a query sentence/words

Two steps: first key words, then lines for each key words

Figures here and in next 4 slides from Wang et al., “Chinese poetry generation with planning based neural
network”, arXiv, 2016
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Poetry generation

Bidirectional GRU for encoder and decoder

For each line: both key word and previous lines are encoded
by encoder for attention computation
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Poetry generation: training

Train model by maximizing log-likelihood of training corpus

Element of 1st column: kn; 2nd column: xn; 3rd column: yn
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Poetry generation: result

Which poem is generated by model?

Enjoy poems with modern title
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Poetry generation: result

Which poem is generated by model?
Enjoy poems with modern title
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Dialogue: another application of RNNs

Machine translation vs. Dialogue (chatbot)
Which is more difficult?
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Dialogue model: HRED

Dialogue: a sequence of utterances (sentences)

Hierarchical recurrent encoder-decoder: 3 RNNs, 2 levels

Figure from Mirza, Osindero, “Conditional generative adversarial nets”, arXiv, 2014
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Dialogue model: HRED

Dialogue: a sequence of utterances (sentences)
Hierarchical recurrent encoder-decoder: 3 RNNs, 2 levels

Figure from Mirza, Osindero, “Conditional generative adversarial nets”, arXiv, 2014
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HRED model (cont’)

Context RNN (blue) encode temporal information among
multiple sentences (utterances); easier for gradient flow
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HRED model (cont’)

Context RNN can represent common ground between
speakers, e.g., topics or concepts shared between speakers

Context encoder output as input for each step of decoder

Other trick 1: train word embedding model with other data

Other trick 2: pretrain RNN with non-dialogue corpus
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Issue of HRED

However, most predictions are too generic, like ‘I don’t know’
or ‘I am sorry’

Reason 1: generic utterances appear often in training set

Reason 2: many words are punctuation marks or pronouns,
making context RNN difficult to learn topics/concepts

Reason 3: Injections to context RNN is from encoder outputs
which largely encode local structure of a sentence, making
context RNN difficult to capture structures of whole sentences
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VHRED: Variational HRED

Introduce a latent variable z whose distribution is Gaussian

Concatenate z and output of context RNN for decoder
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VHRED (cont’)

Mean and variance of the Gaussian are functions of all
previous utterances.

The functions are simple feed-forward networks trained
end-to-end as part of the whole network model.

z can capture/represent high-level information like topic or
sentiment of sentence.

Figure here and table in next slide from Serban et al., “A hierarchical latent variable encoder-decoder model
generating dialogues”, arXiv, 2016
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VHRED result

VHRED generates longer and more meaningful responses
Dataset: Twitter Dialogue Corpus; Ubuntu Dialogue Corpus
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Issue of evaluation

Which response is better? Response quality score 1-5

Current metrics may give low score to the generated response

Figure here and in the next 3 slides from Serban et al., “Building end-to-end dialogue systems using generative
hierarchical neural network models”, AAAI, 2016
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Issue of evaluation (cont’)

Humans rank generated responses consistently, i.e., give low
score to poor responses and high score to good ones!
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Issue of evaluation (cont’)

Scores from existing metrics (y-axis; e.g., BLEU, METEOR)
are not well correlated with human scores (x-axis).
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Summary

Encoder-decoder model is popular for machine translation

Attention mechanism can well handle longer sentences

Poem generation by by encoder-decoder with attention

Chatbot is on the way, difficult to evaluate

Further reading:

Amodei et al., ‘Deep Speech 2: End-to-End Speech Recognition in
English and Mandarin’, arXiv, 2015
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