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Motivation: natural language processing

Sentence or document classification (topic, sentiment)

Topic modelling

Translation

Chatbots, dialogue system, assistant

Summarization

Content and figures in this section mainly from https://m2dsupsdlclass.github.io/lectures-labs/ and
http://mccormickml.com/2016/04/27/word2vec-resources/
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Word representation

Words are orginally represented as 1-hot vectors

Large vocabulary of possible words

Use of word embeddings as inputs in deep NLP models

Word embeddings usually have dimensions 50 - 300

Then how to obtain such embedding?
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Word2vec: skip-gram model

Given central word, pred occurrence of other words in context
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Skip-gram model: a simple 2-layer neural network
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Skip-gram model (cont’)

Two words having similar contexts: ‘intelligent’ and ‘smart’,
‘ant’ and ‘ants’, etc.

If two words have very similar contexts, then skip-gram model
needs to output similar results.

Then the skip-gram network is motivated to learn similar word
vectors (at hidden layer) for these similar words!
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Skip-gram model: vector space is semantic
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Word2vec: continuous bag of words (CBOW) model

‘Reverse’ of skip-gram

C context words as
input

Center word as
output

Hidden layer: average
over C embeddings,
hence ‘bag of words’

Training: again with
cross-entropy loss
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It only begins...

Word2vec is just for word representation.

How to capture meaning of sentence/paragraph?

We need consider order of words in text!
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Language models

Language models: assign a probability to a sequence of words,
such that plausible sequences have higher probabilities, e.g.,

p(‘I like apples’) > p(‘I sit apples’)

p(‘I like apples’) > p(‘like I apples’)

Auto-regressive modelling of sequence (w0,w1, . . . ,wn):

p(w0) · p(w1|w0) . . . p(wn|wn−1,wn−2, . . . ,w0)

p(·) can be a neural network!

p(·) could capture meaning of sequential information
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Conditional language models for NLP problems

Translation: p(Target|Source)
Source (Chinese): ‘wo xi huan ping guo’

Target (English): ‘I like apples’

Model the output word by word:

p(w0|Source) · p(w1|w0, Source) . . .

Question answering / Dialogue: p(Answer|Question,Context)
Context:

‘John puts two apples on the table.’
‘Tom adds three more apples.’
‘Tom leaves to study in the library.’

Question: ‘How many apples are there?’

Answer: ‘There are five apples.’
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Then...

What neural networks can represent p(·|·)?
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Recurrent neural netowkrs (RNN): basics

Recurrent neural network: output of hidden layer at each time
step is part of input to hidden layer at next time step.

Unroll to process an input sequence (x0,x1,x2, . . .)

RNN is a DEEP neural network model



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

Recurrent neural netowkrs (RNN): basics

Recurrent neural network: output of hidden layer at each time
step is part of input to hidden layer at next time step.

Unroll to process an input sequence (x0,x1,x2, . . .)

RNN is a DEEP neural network model



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

Recurrent neural netowkrs (RNN): basics

Recurrent neural network: output of hidden layer at each time
step is part of input to hidden layer at next time step.

Unroll to process an input sequence (x0,x1,x2, . . .)

RNN is a DEEP neural network model



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

RNN basics

ht = g(Whht−1 + Wixt + bh)

yt = σ(Woht + +bo)

g(·): activation function, often tanh; σ(·): softmax function
Same functions (model parameters) used at every time step!
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RNN training

Multiply same matrix at each time step during forward prop

Inputs from many time steps ago can affect output yt

Multiply the same matrix at each time step during backprop
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RNN training: gradient exploding/vanishing

Training RNN is hard

Similar but simpler RNN formulation:

ht = Wg(ht−1) + Wixt

yt = σ(Woht)

Total loss is the sum of loss over all time steps, then

∂L

∂W
=

T∑
t=1

∂Lt

∂W

With chain rule:

∂Lt

∂W
=

t∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk

∂W
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RNN training: gradient exploding/vanishing

So far:

ht = Wg(ht−1) + Wixt

∂Lt

∂W
=

t∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk

∂W

With chain rule again

∂ht

∂hk
= Πt

j=k+1

∂hj

∂hj−1
= Πt

j=k+1W
T diag

[
g′(hj−1)

]
If ‖ ∂hj

∂hj−1
‖ ≤ ‖WT ‖‖diag

[
g′(hj−1)

]
‖ ≤ βWβh

Then ‖ ∂ht

∂hk
‖ = Πt

j=k+1‖
∂hj

∂hj−1
‖ ≤ (βWβh)t−k
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RNN training: gradient exploding/vanishing

When βWβh > 1,

‖ ∂Lt

∂W
‖ � 1

causing gradient exploding!

Trick: gradient clipping

Gradient clipping well solved gradient exploding!



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

RNN training: gradient exploding/vanishing

When βWβh > 1,

‖ ∂Lt

∂W
‖ � 1

causing gradient exploding!

Trick: gradient clipping

Gradient clipping well solved gradient exploding!



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

RNN training: gradient exploding/vanishing

When βWβh > 1,

‖ ∂Lt

∂W
‖ � 1

causing gradient exploding!

Trick: gradient clipping

Gradient clipping well solved gradient exploding!



Word2vec & language modelling RNN & LSTM RNN app examples RNN structures

RNN training: vanishing gradient is a problem

When βWβh < 1, vanishing ∂ht
∂hk

and

ht = Wg(ht−1) + Wixt

∂Lt

∂Wi
=

t∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk
diag [xk]

would cause xk from previous time step k not to affect update
of Wi at time step t.

In other words, prediction error at time step t would not tell a
far-away previous step k to change during backprop.

Vanishing gradient makes RNN unable to capture long-tem
relationship between items far away from each other!
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Long short-term memory (LSTM)

LSTM as basic unit of RNN reduces gradient vanishing

‘short-term memory’: a small amount of information

‘long’: information can last for a long period of time

LSTM: cell, input gate, output gate, (un)forget gate

Cell for ‘remembering’ values over arbitrary time steps, hence
the word ‘memory’ in LSTM

Gates as regulators of the flow of signals through LSTM
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LSTM

Input gate: whether/how much to write to cell
Output gate: how much to reveal cell
Forget gate: whether/how much to erase cell
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LSTM
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LSTM

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

it, ft,ot: input, forget, and output gate; σ: sigmoid function

gt: new signal to update cell

ct: updated cell; ht: new hidden state

Well chosen activation function (tanh) is critical

Three times more parameters than RNN
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LSTM

An alternative diagram representation of LSTM

Figures and content here and in the next 9 slide mainly from Stanford CS231n Lecture 10, 2017
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Why LSTM can reduce gradient vanishing

Additive path between ct and ct−1
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Why LSTM can reduce gradient vanishing

Gradient signal can easily back propagate through multiple
time steps (if forget gate is open)

Reminder: skip connections in ResNet
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Gated recurrent unit (GRU)

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

ĥt = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� ĥt

One gate less than LSTM, so fewer parameters

No ‘cell’, only hidden vector ht passed to next unit

No systematic difference between GRU and LSTM

People tend to use LSTM more
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Vanilla RNN for language modeling

Predict next character based on previous characters
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Language modeling
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Language modeling

With latex source code: predict next character based on
previous characters
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Language modeling

After training a RNN, generate latex doc, then render it
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Language modeling

With C source code: predict next character based on previous
characters
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Language modeling
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RNN variants in structure...

RNN can have more complex structures!
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Vanilla RNN

People may use different notations for RNN.

ht summarizes the sentence up to time step t.

Problem: for some tasks, it would be better to incorporate
information from both preceding and following words.

Figures here and in the next 2 slide from Stanford CS224d, Lecture 8, 2016
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Bidirectional RNN (BiRNN)

Bidirectional RNN captures sequential information from both
directions.

RNN unit could be LSTM or others
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Deep bidirectional RNN

Deep BiRNN: each layer passes an intermediate sequential
representation to the next layer.
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RNN outputs

Left: e.g., sequence of words → sentiment

Centre: e.g., machine translation

Right: e.g., video classification for each frame
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Summary

Word2vec as input to RNN models

Gradient clipping to reduce exploding issue

Vanilla RNN may not well capture long-term relationships

LSTM can capture long-term relationships

LSTM can reduce gradient vanishing issue

Different RNN structures/outputs for different apps

Further reading:

Mikolov, Sutskever, Chen, Corrado, Dean, ‘Distributed
representations of words and phrases and their compositionality’,
NIPS, 2013

Hochreiter, Sepp, Schmidhuber, ‘Long short-term memory’, Neural
computation, 1997
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