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SUMMARY
Colorectal neuroendocrine tumors (NETs) differ significantly from colorectal carcinoma (CRC) in terms of
treatment strategy and prognosis, necessitating a cost-effective approach for accurate discrimination.
Here, we propose an approach for distinguishing between colorectal NET and CRC based on pathological
images by utilizing pathological prior information to facilitate the generation of robust slide-level features.
By calculating the similarity between morphological descriptions and patches, our approach selects only
2%of the diagnostically relevant patches for both training and inference, achieving an area under the receiver
operating characteristic curve (AUROC) of 0.9974 on the internal dataset, and AUROCs of 0.9724 and 0.9513
on two external datasets. Our model effectively identifies NETs from CRCs, reducing unnecessary immuno-
histochemical tests and enhancing the precise treatment for patients with colorectal tumors. Our approach
also enables researchers to investigate methods with high accuracy and low computational complexity,
thereby advancing the application of artificial intelligence in clinical settings.
INTRODUCTION

Neuroendocrine tumors (NETs) are a group of rare neoplasms

originating from neuroendocrine cells throughout the body,

known for producing peptide hormones and biogenic amines.1–3

The gastrointestinal tract is the most common site of NET occur-

rence. The frequency of colorectal NETs is increasing, attributed

to universal screening colonoscopies and enhanced endoscopic

imaging quality.4 Colorectal NETs differ significantly from colo-

rectal adenocarcinoma in terms of molecular subtypes, treat-

ment strategies, and prognostic outcomes. Consequently, dis-

tinguishing colorectal NETs from colorectal adenocarcinoma is

crucial for personalized treatment.5,6

In clinical settings, differentiation between colorectal NET and

adenocarcinoma is typically performed through histopatholog-

ical examination of hematoxylin and eosin (H&E)-stained sec-

tions. Morphologically, NETs often exhibit solid, trabecular, gyri-

form, or glandular patterns, with uniform nuclei, coarsely

stippled chromatin, and finely granular cytoplasm.7 However,

these features can sometimes overlap with those of colorectal
Cell Reports Medicine 5, 101785, Octo
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adenocarcinoma. Therefore, additional immunohistochemical

biomarkers, such as synaptophysin, chromogranin, neural-spe-

cific enolase, and CD56, are utilized to identify NETs. Given

the rarity of NETs, these approaches are labor-intensive for pa-

thologists and not cost-effective. Hence, effective methods

need to be developed to differentiate NETs from colorectal

adenocarcinoma.

Deep learning has shown promise in identifying histomorpho-

logical patternsanddisease-specific features,8,9withpotential ap-

plications for automated biomarkers. Recent studies have re-

vealed that deep learning can classify routine H&E-stained,

formalin-fixed, paraffin-embedded digital whole-slide images

(WSIs) of colorectal cancer intomicrosatellite stable andmicrosat-

ellite instability categories, outperforming board-certified patholo-

gists.10–12 Furthermore, the incorporation of extensive pre-training

in pathology has substantially improved the ability of models to

extractmorphological characteristics.13–16Thesehavesparked in-

terest in using deep learning models to identify additional NET

characteristics that may not be readily apparent to pathologists,

thus providing an automated screening tool to triage patients for
ber 15, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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confirmatory testing of NETs. Therefore, we intend to develop and

validate a deep learning-based classification method in colorectal

samplesandextend its application tobiopsy tissues,where limited

observation fields and diagnostic challenges exist.

In current setups, deep learning approaches for WSI classifica-

tion typically involve extracting features from all patches and then

integrating them into a slide-level feature for final prediction.17–21

For example, dividing a slide into patches of 2563 256 pixels at3

40magnification can result in tens of thousands of patches, many

ofwhichmaybe irrelevant to the tumor. Themixture of tumor-rele-

vant and irrelevant patches often hinders the deep learning

model’s ability to effectively learn and identify pathological tumor

features. Previous studies have attempted to enhancemodel per-

formance through the implementation of transformer architec-

tures.11,22 However, the computational complexity of trans-

formers escalates as the number of tokens increases. These

approaches differ from standard clinical practice, where patholo-

gists diagnose based on identified tumor regions using their prior

knowledge of pathology. Compared to learning from diagnostic

reports as supplementary information,23 prior pathological knowl-

edge is more valuable and easily accessible. Encoding this pa-

thology knowledge as text and integrating it into the deep learning

model could enable the model to more accurately locate diag-

nosis-related regions, thereby improving data efficiency.

In this study, we propose a deep learning approach to distin-

guishing colorectal NETs from colorectal adenocarcinoma with

enhanced generalization capability and improved performance.

Departing from the prevailing practice of predicting based on all

patches, our approach intelligently selects key patches and gen-

erates robust slide-level features based solely on the selected

small subset of patches. Specifically, a similarity-based selection

method is introduced to exclude diagnosis-irrelevant patches, al-

lowing the model to focus on clinically significant regions. More-

over, the morphological description is considered as a text proto-

type, uniform and independent of color variations across

datasets. We utilize this text prototype as the prior knowledge

about each cancer type to guide the generation of slide-level fea-

tures. Our approach shows great performance in a multi-centric

study involving three cohorts of over 1,500 patients with surgical

samples, and an additional cohort of biopsy sections.

RESULTS

Patient cohorts
Three cohorts of surgical samples and a cohort of biopsied sam-

ples were included in this study, i.e., Internal-The First Affiliated

Hospital of Sun Yat-sen University (FAH), External-Sun Yat-sen
Figure 1. The workflow of the proposed deep learning model

(A) The datasets were collected from three different centers containingmore than

training, while data from the other two centers were utilized to construct externa

(B) The image encoder and the text encoder employed in our model were traine

training strategy enhanced the encoders’ capabilities, enabling them to capture

(C) After digitizing the slides, the tissue regions were segmented, and the whole-

(D) A similarity-based selection method was used to extract diagnostically releva

(E) The computational flow of the model is mainly divided into three parts: diag

prediction.

(F) Our model can be applied in clinical settings for early screening, significantly

diagnostic testing.
University Cancer Center (CC), External-Tianjin Medical

University Cancer Institute & Hospital (TCIH), and Biopsy-CC

(Figure 1A). Each H&E-stained WSI in these cohorts was

collected from an individual patient. The Internal-FAH cohort

serves as the internal dataset for training the deep learning

model, comprising 130 patients with NET and 420 patients

with colorectal adenocarcinoma. External-CC and External-

TCIH are used as two independent external validation datasets.

The External-CC cohort includes 837 patients (706 diagnosed

with colorectal adenocarcinoma and 131 with NET), and the

External-TCIH cohort consists of 311 patients with colorectal

carcinoma (CRC) and 101 patients with NET. Additionally, the

Biopsy-CC cohort comprises biopsy data which are used to vali-

date the model’s potential for early screening, including 108

slides of NET and 315 slides of colorectal adenocarcinoma.

A novel framework for distinguishing colorectal NET
In this study, the proposedmodel primarily comprised pre-trained

imageand textencoders,13 adiagnostic-relatedpatchesselection

module, an attention-based aggregation module, and a text-

guided slide-level feature generation module. The encoders

were pre-trained using a large-scale dataset of pathological im-

ages. The pre-trained image encoder was used to extract patch-

level features, while the pre-trained text encoder was employed

to transform cancer-specific descriptors into text features. The

diagnostic-related patches selection module eliminated regions

unrelated to diagnosis from the whole slide. Specifically, the sim-

ilarity between each patch and cancer-specific descriptors was

computed, and patches with the highest similarity were selected

as inputs for subsequentmodules. The design for extracting diag-

nostically relevant patches was primarily inspired by our observa-

tions of the diagnosis process from clinical pathologists, i.e., pa-

thologists can quickly locate key regions of a slide rather than

relying on the entire slide for a diagnosis. This approach sharply

contrasts with current deep learning pipelines. Then, the attention

mechanism and text-prior information were used to aggregate

patch features into slide-level features. This aided the model in

further focusing on the regions most relevant to the diagnosis.

Twelve deep learning models were constructed, including a

baseline model using all patches as input, ten models using vary-

ing proportions of patches (subsequently referred to as the simi-

larity-basedmodel), and the text-prior model with 2% patches as

input. It is worth noting that the difference between the similarity-

based model and the text-prior model was that the text-prior

model had a text-guided slide-level feature generation module.

The subsequent sections of this part first introduced the three

types of models in sequence. Then, the model trained by the
1,500 patients. Data from one center were used as an internal dataset for model

l datasets for testing the model’s generalization.

d through contrastive learning on large-scale pathology image-text pairs. This

more robust representations.

slide images were decomposed into patches.

nt patches from the whole-slide images.

nosis-related patch selection, text-guided slide-level feature generation, and

reducing the workload of pathologists and minimizing the need for additional
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Figure 2. The performance of our models on three datasets: an internal dataset (Internal-FAH) and two external datasets (External-CC and

External-TCIH)

(A–C) The performance of the model with varying numbers of selected patches. (A), (B), and (c) correspond to the Internal-FAH, External-CC, and External-TCIH

datasets, respectively.

(D) The model achieved an AUROC score of 0.9974 on the internal dataset.

(E) On the External-CC dataset, the model maintained an AUROC of 0.9724.

(F) On the External-TCIH dataset, the model achieved an AUROC of 0.9513.

(G) When compared to existing models on the external datasets, our model consistently outperformed them.
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proposed framework was compared to state-of-the-art (SOTA)

methods, demonstrating the superiority of the proposed model.

Finally, visualization tools were used to interpret the model, and

the model was further extended to the biopsy dataset.

Baseline model performance using all patches as input
Initially, the baseline model’s performance was assessed using

all patches as inputs (Table S1). Evaluation on the internal data-

set revealed an area under the receiver operating characteristic

curve (AUROC) of 0.9987 (95% confidence interval [CI] 0.9972–

1), with a sensitivity of 0.9929 (95% CI 0.9861–0.9996) and a

specificity of 0.9615 (95% CI 0.9296–0.9935). Subsequent

assessment on the External-CC dataset yielded an AUROC of

0.9325 (95% CI 0.9230–0.9421), a sensitivity of 0.9975 (95% CI

0.9959–0.9990), and a specificity of 0.5718 (95% CI 0.4763–

0.6672). Similarly, evaluation on the External-TCIH dataset re-
4 Cell Reports Medicine 5, 101785, October 15, 2024
sulted in an AUROC of 0.9097 (95% CI 0.8993–0.92), with a

sensitivity of 0.9997 (95% CI 0.9991–1) and a specificity of

0.5129 (95% CI 0.4075–0.6182). Although the baseline model

performed well on the internal dataset, it exhibited limited gener-

alization ability and poor specificity. Due to the limited training

data and the inherent complexity of pathology data, deep

learning models are prone to overfitting. Consequently, overfit-

ting leads to diminished performance on external datasets,

particularly with a corresponding decrease in sensitivity or spec-

ificity. We further explored models that offer superior perfor-

mance and greater computational efficiency.

The effect of diagnosis-related patch extraction on
model performance
To improve computational efficiency and performance, a similar-

ity-based approach was introduced. This approach relies on



Table 1. Model performance on the internal dataset and two

external datasets

Cohorts

Predictive performance

Sensitivity

(95% CI)

Specificity

(95% CI)

AUROC

(95% CI)

Internal-FAH 0.9833

(0.9712–

0.9954)

0.9692

(0.9359–

1.0000)

0.9974

(0.995–

0.9998)

External-CC 0.9402

(0.9018–

0.9786)

0.8533

(0.7732–

0.9332)

0.9724

(0.9645–

0.9801)

External-TCIH 0.9382

(0.8868–

0.9896)

0.7547

(0.6765–

0.8329)

0.9513

(0.9408–

0.9618)

Note: 95% confidence intervals are included in brackets; AUROC, the

area under the receiver operating characteristic.

Article
ll

OPEN ACCESS
morphological descriptors to pinpoint and prioritize patches that

most closely align with the provided description. In this section,

we systematically validated themodel by selecting the top 1% to

top 10% patches with the highest similarity scores, chosen at

1% intervals. On the Internal-FAH dataset (Figure 2A;

Table S2), the transition from selecting 10%–1% of the patches

yielded AUROCs of 0.9978 (95%CI 0.9945–1) to 0.9995 (95%CI

0.9987–1). Likewise, for the External-CC dataset (Figure 2B;

Table S2), AUROC values increased from 0.9577 (95% CI

0.9493–0.9661) to 0.9768 (95% CI 0.9706–0.9830) as the pro-

portion of selected patches decreased from 10% to 1%. Simi-

larly, in the External-TCIH cohort (Figure 2C; Table S2),

AUROC values ranged from 0.9331 (95% CI 0.9265–0.9397) to

0.9493 (95% CI 0.9446–0.954) across the same range of
Table 2. The comparison of our method’s performance and SOTA m

Cohorts Method

Predictive performance

Sensitivity (95% CI) S

External-CC our method 0.9402 (0.9018–0.9786) 0

CLAM-SB 0.9956 (0.9879–1.000) 0

CALM-MB 0.9975 (0.9963–0.9986) 0

AttentionMIL 0.9949 (0.9907–0.9992) 0

DSMIL 0.9759 (0.9343–1.0000) 0

FRMIL 0.9367 (0.8151–1.0000) 0

MeanPooling 0.9999 (0.9994–1.0000) 0

MaxPooling 0.9878 (0.9757–0.9999) 0

External-TCIH our method 0.9382 (0.8868–0.9896) 0

CLAM-SB 0.9900 (0.9724–1.0000) 0

CALM-MB 1.0000 (1.0000–1.0000) 0

AttentionMIL 0.9982 (0.9965–0.9999) 0

DSMIL 0.9728 (0.9343–1.0000) 0

FRMIL 0.8442 (0.6000–1.0000) 0

MeanPooling 1.0000 (1.0000–1.0000) 0

MaxPooling 0.9836 (0.9553–1.0000) 0

Note: 95% confidence intervals are included in brackets.
aIndicates the comparison of the difference between other models and our m

not applicable.
selected patches. Corresponding receiver operating character-

istic curves (ROCs) are provided in Figure S1. Taken together,

the performance of the proposed similarity-based model signif-

icantly exceeded that of the baseline model, underscoring the

potential of the proposed model to enhance both computational

efficiency and diagnostic performance.
Performance of the text-prior model
The model demonstrates a reduced sensitivity to the patch se-

lection ratio. Considering both computational efficiency and per-

formance, the input was limited to only 2% of diagnostically

pertinent patches, subsequently generating text-guided slide-

level features with the text-prior model architecture. On the

Internal-FAH dataset (Tables 1 and S3; Figure S2), the

AUROCs across the testing set in each fold ranged from

0.9908 to 1. Cumulatively across testing folds, the model

achieved an AUROC of 0.9974 (95% CI 0.995–0.9998), an accu-

racy of 0.9800 (95% CI 0.9676–0.9924), an F1-score of 0.9868

(95% CI 0.9787–0.9949), a sensitivity of 0.9833 (95% CI

0.9712–0.9954), and a specificity of 0.9692 (95% CI 0.9359–1).

Furthermore, we scrutinized the model’s generalization capacity

on external datasets. On the External-CC dataset, the model at-

tained an AUROC of 0.9724 (95% CI 0.9645–0.9801), a sensi-

tivity of 0.9402 (95% CI 0.9018–0.9786), and a specificity of

0.8533 (95% CI 0.7732–0.9332). Similarly, on the External-

TCIH cohort, the model achieved an AUROC of 0.9513 (95%

CI 0.9408–0.9618), a sensitivity of 0.9382 (95% CI 0.8868–

0.9896), and a specificity of 0.7547 (95% CI 0.6765–0.8329).

ROCs illustrating themodel’s performance across different data-

sets are described in Figures 2D–2F. Ablation experiments for

each module are detailed in Table S4. These outcomes
ethods’ performance on two external cohorts

pecificity (95% CI) AUROC (95% CI) pa

.8533 (0.7732–0.9332) 0.9724 (0.9645–0.9801) NA

.1466 (0.0309–0.2622) 0.8014 (0.7438–0.8590) <0.001

.5893 (0.5243–0.6543) 0.9598 (0.9514–0.9682) 0.0606

.5076 (0.3931–0.6222) 0.8664 (0.8354–0.8975) <0.001

.7870 (0.6994–0.8747) 0.9137 (0.8978–0.9296) <0.001

.7130 (0.6254–0.8006) 0.9017 (0.8690–0.9344) <0.001

.1985 (0.0853–0.3116) 0.9227 (0.9101–0.9354) <0.001

.3626 (0.1827–0.5424) 0.8105 (0.7548–0.8663) <0.001

.7547 (0.6765–0.8329) 0.9513 (0.9408–0.9618) NA

.1991 (0.0615–0.3367) 0.8544 (0.8382–0.8707) <0.001

.5468 (0.4693–0.6243) 0.9182 (0.8966–0.9398) 0.0173

.4367 (0.3259–0.5476) 0.8572 (0.8351–0.8794) <0.001

.7041 (0.6994–0.8747) 0.9193 (0.9008–0.9377) <0.001

.7481 (0.6664–0.8639) 0.8718 (0.8193–0.9242) <0.001

.1496 (0.0202–0.1888) 0.9382 (0.9337–0.9426) 0.0478

.5115 (0.3324–0.7039) 0.8499 (0.8157–0.8841) <0.001

ethod; AUROC, the area under the receiver operating characteristic; NA,
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collectively indicate that the text-prior model, leveraging only 2%

of diagnostically relevant patches, exhibits robust performance

in diagnosing NET across diverse datasets.

Comparative performance analysis of deep learning
methods
For a comprehensive evaluation of our model’s performance, a

rigorous comparative analysis was conducted against SOTA

methods on external datasets. These methods encompassed a

variety of approaches, including clustering-constrained atten-

tion multiple instance learning network (CLAM)24 (CLAM-SB

and CALM-MBmentioned in the original article), attention based

multiple instance learning network (AttentionMIL),25 dual-stream

multiple instance learning network (DSMIL),18 feature re-calibra-

tion based multiple instance learning network (FRMIL),26

MeanPooling, and MaxPooling. To ensure fair comparison, all

models underwent training and assessment via 10-fold cross-

validation within a consistent experimental setup. Specifically,

we maintained uniformity by employing the same patch-level

feature extractor across all methods, while also adhering to

consistent training hyperparameters and loss functions for su-

pervision. The results showed that the AUROCs of the SOTA

methods ranged from 0.8014 to 0.9598 on the External-CC data-

set and from 0.8499 to 0.9382 on the External-TCIH dataset, all

of which were surpassed by our proposed method (Figure 2G;

Table 2). Furthermore, McNemar’s test results indicated a statis-

tically significant difference between our method and other

methods (Table S5). We also examined both the training and

inference times of the models (Table S6). Our findings indicate

that the proposed model requires only two-thirds of the training

time needed by other models while also demonstrating superior

speed during inference. This dual advantage underscores the

model’s efficacy in terms of accuracy and efficiency.

Interpretability and feature visualization
To evaluate the efficacy of the patch selection method, the

model’s selection of varying proportions of patches was visually

depicted (Figures 3A–3C and S3). Remarkably, the regions iden-

tified by the method closely correspond with tumor regions

manually delineated by the pathologists. Furthermore, the

patches chosen by the model exhibit a strong concordance

with the textual information provided by the pathologists (Fig-

ure S4). These localized patches effectively capture representa-

tive morphological features specific to CRC or NET, suggesting

themodel’s potential to discern diagnostically significant regions

for tumor classification.

To further assess the discriminative nature of different clas-

ses of patches at the feature level, a series of analyses were

conducted about feature separability and visualization.

Initially, 512-dimensional features were extracted using the

patch-level feature extractor. To facilitate a more effective

comparison of the feature separability between CRC and

NET, patches were randomly sampled in proportions approx-
Figure 3. Visualization of selected patches

(A–C) The left figure displays the manual outlines performed by the pathologist. Th

the image. The right figure presents representative patches chosen based on sim

within the pathologist’s labeled region.
imating the categories in the dataset. Subsequently, the uni-

form manifold approximation and projection (UMAP) tech-

nique27 was employed to visualize the features. Notably, two

sampling approaches were compared, one entailing sampling

from all patches, while the other involved sampling from the

2% of patches selected according to the proposed method

in this study. When sampling from all patches, a significantly

higher degree of feature indistinguishability between the two

categories was observed, particularly evident on the Internal-

FAH and External-TCIH datasets (Figures 4A and 4C).

Conversely, when sampling from the 2% of selected patches

as per the described approach, the remaining patches ex-

hibited significantly improved separability in the feature space,

with a reduced overlap fraction. This effect was particularly

pronounced on the External-CC dataset (Figure 4B), where

features from the two categories displayed a higher degree

of spatial separability. These results provided evidence to sup-

port that the selected patches were more distinguishable at

the feature level, thus mitigating the complexity in subsequent

classification tasks.

Adaptation of resection-trained models for biopsy
analysis
In light of the diagnostic complexities inherent in biopsy clinical

settings, the application scope of our model was expanded to

include the Biopsy-CC dataset (Figure S5A). Acknowledging

the substantial disparity in amount of patches between biopsied

and surgical sections, the patches ratio was further redefined

within the biopsy cohort. Initially, we assessed various percent-

ages of patches as model inputs (Figures S5B–S5F). Notably,

comparable performance levels were observed when utilizing

10%, 15%, and 20% of patches as inputs. However, a notice-

able decline in performance was observed when only 2% and

5% of patches were utilized. Based on considerations of perfor-

mance and computational efficiency, we selected 10% of

patches, which represented the most suitable input configura-

tion, for further analysis. Employing this chosen input configura-

tion (Figure S5D; Table S7), our model achieved an AUROC of

0.915 (95%CI 0.9031–0.9269). The data underscored the robust

performance and computational efficiency of our deep learning

model, even amid the challenges presented by biopsy clinical

scenarios.

DISCUSSION

Accurately differentiating between colorectal NETs and colorectal

adenocarcinomas is crucial due to the significant differences in

treatment strategies and prognoses associated with these condi-

tions. Traditionally, pathologists have relied on the evaluation of

H&E-stained sections and the use of immunohistochemical bio-

markers to aid in the diagnosis of suspected colorectal NETs.

To address the need for a more cost-effective and efficient diag-

nostic approach, we developed a data-efficient deep learning
e middle figure shows patches selected in different proportions projected onto

ilarity. Correct proportion indicates the proportions of model-selected patches
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model that selectively identifies a small number of diagnosis-

related patches as inputs. Thismethod not only improves compu-

tational efficiency but also enhances diagnosis performance and

generalization ability. Moreover, by incorporating cancer-related

descriptions at the slide level, we achieved superior performance

on both external validation and biopsy datasets.

This study is the first to employ a similarity-based method for

selection of diagnosis-related patches. Notably, this approach

showed no discernible performance impact on the internal da-

taset compared to models that use all available patches. How-

ever, it led to marked improvements in generalization perfor-

mance on external datasets. Even with only 1% of the

patches selected as input, the model’s performance on both

external datasets was enhanced. The limited nature of the

training data, coupled with the high inherent complexity of pa-

thology data, often leads to overfitting in models trained on

WSIs. Our proposed method effectively reduces the inclusion

of irrelevant diagnostic patches, thereby decreasing task

complexity and mitigating the overfitting. Consequently, the

model’s generalization ability is strengthened, resulting in better

overall performance. This observation underscores the poten-

tial of selectively identifying tumor regions to reduce computa-

tional demands without compromising diagnostic accuracy.

Moreover, our results suggest that reducing the number of

patches from 10% to 1% does not significantly impact diag-

nostic performance, with AUROC differences remaining below

0.02. This indicates that the model is not highly sensitive to

the number of selected patches, paving the way for further

optimization of patch selection strategies. A particularly note-

worthy observation is the disparity in patch numbers between

the External-TCIH and Internal-FAH (Table S8). Despite this dif-

ference, the model consistently yields satisfactory results on

the External-TCIH dataset, underscoring its ability to manage

varying quantities of patches effectively.

Existing methods often suffer from performance degradation

when applied to data from different centers, primarily due to var-

iations in staining protocols, tissue preparation techniques, and

scanning instruments. To address this issue, additional training

using generative adversarial networks for color normalization is

commonly required.28–31 Unlike previous networks that relied

on models pre-trained on ImageNet,32 our study employed a

foundation model extensively pre-trained on a large-scale data-

set of pathological images. This pre-training enabled our model

to inherently handle color variations, thereby enhancing its

generalization ability across datasets from different centers

and eliminating the need for additional color normalization

models.

In the field of natural images, studies have shown that textual

information can significantly enhance the performance of image-

based models.33–37 While similar attempts have been made in

pathology, they have often focused on establishing foundation

models15,16,38–40 using large datasets or extracting insights
Figure 4. Visualization results using UMAP

(A–C) Results were obtained from Internal-FAH, External-CC, and External-TCIH d

from all patches, while the right-side figures display results after random samplin

the proposed method demonstrated greater separability, which enhanced mode
from diagnostic reports corresponding to the WSIs,23,41 which

often require paired data. Our study takes a different approach

by leveraging the diagnostic expertise of pathologists, a

resource that remains underutilized. We encapsulate this exper-

tise into cancer-specific descriptors, treating them as prototypes

that remain consistent across data from different centers. By

integrating a text-guided feature generation module, we align

slide-level features more closely with the prototypes, thereby

mitigating the influence of color variations. This approach

yielded highly satisfactory results, achieving an AUROC of

0.9974 on an internal dataset, and AUROCs of 0.9724 and

0.9513 on two external datasets. Given the model’s strong per-

formance and generalization across both biopsy and surgically

resected samples, it shows considerable promise for clinical

translation. The model can generate diagnostic results with con-

fidence values, allowing pathologists to re-examine only low-

confidence cases, or to use the model as an early screening

tool in clinical settings.

In conclusion, our study presents a novel model for distin-

guishing between colorectal NETs and colorectal adenocarci-

nomas using data from both textual information andWSIs. Given

the distinct treatment strategies and prognostic implications

associated with these conditions, accurate identification of

NETs by our model has the potential to minimize the necessity

for supplementary immunohistochemical tests, thereby opti-

mizing the diagnostic workflow. This integration not only en-

hances diagnostic efficiency but also has the potential to reduce

healthcare costs. Our findings contribute to the application of

artificial intelligence in clinical settings and open new avenues

for further research in this field.

Limitations of the study
Despite these promising results, several limitations of this study

should be acknowledged. First, the deep learning model was

trained and validated retrospectively, highlighting the need for

rigorous and prospective clinical studies to provide more reli-

able and conclusive evidence. Second, while our approach at-

tempts to select diagnostically relevant patches, it has inherent

limitations. Future investigations could explore constructing

multi-scale representations by extracting key patches at

various magnifications, potentially enhancing the model’s abil-

ity to capture important features across different scales. Addi-

tionally, identifying the optimal textual information that could

further improve patch selection remains an open question.

Determining specific textual information that complements

pathological images offers a promising avenue for further

model optimization. Although we enhanced the model’s gener-

alization ability by incorporating the pre-trained model and the

diagnostic-related patch selection module, further enhance-

ment could be made by including multi-center data during

training and developing more robust feature extractors in future

research. Moreover, the concept of our method can be
atasets, respectively. The left-side figures show results after random sampling

g from patches selected using the proposed method. The features selected by

l training.
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extended to tasks involving the discrimination of morphologi-

cally distinct cancer types. The diagnostic-related patch selec-

tion module could be deployed as a plug-and-play component

in subsequent models by simply providing relevant category

descriptions. This data-effective algorithm holds great potential

for practical deployment, thereby enhancing the applicability of

AI models in clinical practice.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants
To conduct model training and validation, we utilized datasets obtained from three medical centers: The First Affiliated Hospital

(FAH) of Sun Yat-sen University, the Sun Yat-Sen University Cancer Center (CC), and the Tianjin Medical University Cancer Insti-

tute & Hospital (TCIH) (Figure 1A). The Internal-FAH dataset included slides collected from September 2007 to June 2021 (550

patients). The External-CC dataset comprised data from February 2014 to August 2021 (837 patients). The External-TCIH dataset

consisted of data from May 2014 to January 2018 (412 patients). Finally, the Biopsy-CC dataset contained data from September

2015 to October 2023 (423 patients). H&E-stained tumor slides in the Internal-FAH, External-CC, and External-TCIH datasets were

scanned using the Kfbio KF-PRO-020 scanner, Aperio AT2 scanner, and PHILIPS Ultra Fast Scanner, respectively. Similarly, slides

in the Biopsy-CC dataset were scanned using the PHILIPS Ultra Fast Scanner. All patient-related information obtained was ethi-

cally approved by the Institutional Ethics Committee (B2021-435-01), and informed consent was waived for this retrospective

study.

METHOD DETAILS

Data preprocessing
We followed the method in CLAM24 to transform the downsampled WSI from RGB to the HSV color space. Initial tissue

regions were obtained based on the threshold of the saturation channel, and the small gaps and holes were filled using morpho-

logical closing. These initial regions were further filtered based on an area threshold to obtain the final segmentation mask.

After segmentation, the foreground regions (containing both tumor and normal tissue) were divided into patches of size

224 3 224 pixels at 103 magnification. Given that the pre-trained image encoder has been trained on a substantial volume

of unprocessed data, we believe that it could extract color-agnostic features, thereby obviating the need for supplementary

patch processing.

Pre-trained text and image encoders
Ikezogwo et al.13 employed educational videos sourced from expert pathologists available on YouTube. Key frames were extracted

from these videos, followed by conversion of the corresponding speech into text. Subsequently, de-noise techniques were applied to

obtain the final set of image-text pairs. This process led to the construction of QUILT, a dataset encompassing 419,780 images

aligned with 768,826 text pairs. To further enhance the training data, QUILT-1M was generated by amalgamating data derived

from open-source articles in PubMed, pathology images in LAION-5B,42 and data extracted from Twitter.15 This augmented dataset

was then utilized for the pre-training of the model.

QUILTNET uses the Contrastive Language-Image Pre-training (CLIP) objective to complete the pre-training on QUILT-1M,

aiming to enable the model to learn the matching relationship between text and image pairs. QUILTNET consists of two

modules: text encoder and image encoder. The image encoder utilizes the ViT-B/16 architecture, while the text encoder employs

GPT-2 with a context length of 77. During the training process, for a batch containing N image-text pairs, the model predicts N2 im-

age-text similarity, which is calculated as the cosine similarity of text embeddings and image embeddings, i.e., the matrix shown in.

There are N pairs of positive samples in this matrix, where the text is paired with the image, and the similarity is represented by the

diagonal element of the matrix. The remaining ðN2 �NÞ pairs of samples are considered as negative samples. Therefore, the training

objective is to maximize the similarity of the positive samples while minimizing the similarity of the negative samples. Ultimately, the

CPU Xeon(R) Gold 6240 Intel Corp., Santa Clara, California. N/A
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objective is expressed as:

L = � 1

2N

0
BBB@

XN
i = 1

log
ecosðIi ;TiÞ

PN
j = 1

ecosðIi ;TjÞ
+

XN
i = 1

log
ecosðIi ;TiÞ

PN
j = 1

ecosðIj ;TiÞ

1
CCCA

where Ii and Ti denote the embeddings of the i-th image and text, respectively. Upon completion of the pre-training phase, the pa-

rameters of both the image encoder and text encoder are frozen, and no subsequent fine-tuning is conducted.

Selection of diagnostic-related patches
Whole slide images often contain extensive regions of normal tissue, which we hypothesized may have weak correlations with the

diagnostic process, potentially impacting the model’s accuracy. Furthermore, capturing tens of thousands of patches at a 103 res-

olution from the entire slide imposed a substantial computational burden on subsequent modules, especially the attention compu-

tation module. As a result, we proposed a diagnostic-related patches selection module based on the similarity to extract the top k%

patches that exhibited the highest relevance to the morphological characteristics of the NET and CRC.

Experienced pathologists provided descriptions of NET and CRC by reviewing relevant literature7 and combining insights from

their clinical experience to summarize the key morphological features, as depicted in Table S9. The corresponding textual descrip-

tions of CRC and NET were designated as TC and TE , respectively. Initially, the tokenizer pre-processes TC and TE , and mapping

them to corresponding embedding vectors. These text embedding vectors were then input into the pre-trained text encoder, yielding

the respective text features, fC and fE . Given that the image encoder and text encoder were pre-trained using large-scale text-image

pairs, patches exhibiting characteristics aligned with the morphological text descriptions would exhibit high similarity with the afore-

mentioned text features in the feature space. All patches, denoted as I = fI1;.INg; from a given slide were fed into the image

encoder, generating the feature set F = ff1;.fNg. Subsequently, the cosine similarity between the text features and image features

was computed, and the top k% of patches with the highest similarity were selected to represent the whole slide, denoted as:

P = top K
�
cos ðf i; f jÞ

�

where top K denotes the operation of selecting the patch with the highest similarity, f i ˛F; f j ˛ ffC; fEg, P is the set of obtained

patches. Note that all subsequent computations were exclusively performed on this selected set of patches and not on the entirety

of patches.

Attention-based aggregation module
The module was designed to aggregate patch features using attention scores and derive slide-level features. Due to the differing re-

gions of interest for each cancer type, two sets of attention scores were calculated separately. This distinction was crucial due to the

varied morphological characteristics exhibited by the categories, necessitating the prediction of class-specific attention scores. To

facilitate this, we defined two shared fully connected layers with weights U˛R2563512 and V ˛R2563512 for all classes. Subsequently,

we established two parallel attention branches, corresponding to the number of classes, with each branch associated with param-

etersWp ˛R13256, with i˛ f1;2g. Accordingly, the attention score of the q-th patch for the p-th class denoted aq;p; is determined as:

aq;p =
efWpðtanh VfTqÞ⨀simgðUfTqÞg

PN
j = 1

efWpðtanh VfTj Þ⨀simgðUfTj Þg

Consequently, category-specific slide-level features fslide;p were acquired by aggregating patch features using category-specific

attention scores. The slide-level feature for the p-th class was calculated as:

fslide;p =
XN
k = 1

ak;pfk
Text-guided slide-level feature generation
Data obtained from different centers exhibited significant variations in staining due to differences in staining reagents, tissue section

thickness, staining conditions, and scanner models (Figure S6). Since we did not perform color normalization on individual patches,

models trained solely on internal center data may exhibit poor performance when applied to external data. Despite the visual dissim-

ilarities observed among slides from different centers, their color-independent morphological features demonstrated commonality.

By disregarding the color variability, slides belonging to the same class could still be described using identical descriptors. Conse-

quently, we regarded text features as prototypes and utilized them to guide the generation of more robust slide-level features.

The structure and performance of the module are detailed in Figure S7 and Table S10. Specifically, the text features were initially

mapped to the same feature space as the slide-level features using a fully connected layer parameterized by Wmap ˛R2563512.
e2 Cell Reports Medicine 5, 101785, October 15, 2024
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Subsequently, the mapped text features were integrated with the image features through fusion to obtain the final slide-level feature

representation. Two fusion approaches, ADD-Fusion and FC-Fusion were developed for the fusion. In the ADD-Fusion approach, the

computation of final slide-level features ffinal was as follows:

ffinal = fslide+Wmapf
T
text

where fslide = ½fslide;1;fslide;2�, ftext = ½fC; fE �, ffinal = ½f final;1;f final;2�, And the number of categories is 2 due to the current setting of a

binary classification problem.

Conversely, in the FC-Fusion approach, a different procedure is employed for the computation of final slide-level features:

ffinal = Wf

�
fslide;Wmapf

T
text

�T

where ½$; $� denotes the concatenation operation andWf is the parameter of the fusion module. Finally, the unnormalized slide-level

score sslide;p was computed through the classification layer Wc;p ˛R13256 to obtain:

sslide;p = Wc;pf
T
final;p

where p˛ f1;2g. For inference, a softmax function is applied to the unnormalized slide-level score to obtain the final predicted prob-

ability distribution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental setup and implementation details
We conducted all experiments using 10-fold cross-validation. In this cross-validation variant, internal validation and test sets were

split off from the full dataset at the patient level, leaving 8-folds for training, 1-fold for validating, and the remaining 1-fold for testing.

To maintain an even distribution of categories among the three datasets, we conducted proportional random sampling from each

class to generate data for each respective set. During training, the validation set was used to determine when to stop model training.

For external datasets, the models were tested using complete datasets. The models were trained with the Adam43 optimizer with an

L2 weight decay of 1e�5 and a learning rate of 2e�4. All models were trained with a batch size of 1, for a minimum of 50 epochs,

extending up to a maximum of 200 epochs if the early stopping criterion was not met. The early stopping criterion was defined as

halting the training if the validation loss did not decrease within 20 consecutive epochs. For training time calculation, we iterated

the training process 10 times to derive a more dependable average time. Regarding inference time, we computed the inference

time across all dataset samples and divided it by the total sample count to determine the average inference time per sample.

Note that the encoder employed for patch-level feature extraction is pretrained and consistent across all models, hence not factored

into the time evaluation. Segmentation and patching ofWSIs were performed on Intel(R) Xeon(R) Gold 6240 Central Processing Units

(CPUs), and the models were trained on NVIDIA GeForce RTX 2080 Ti Graphics Processing Units (GPUs).

Quantification and statistical analysis
Our main evaluation metric was the AUROC. Additionally, we employed the F1 score, accuracy, sensitivity, and specificity (with a

classification threshold of 0.5) for performance evaluation. For each experiment, we reported the mean and standard deviation of

the model’s internal and external test performances. To ensure data independence, we selected only one slide per patient, guaran-

teeing that each patient appeared in only one set for training or validation. The external test sets from different centers, allowing for a

more comprehensive assessment of the generalization properties of our algorithms. A p value less than 0.05 was considered statis-

tically significant. Data pre-processing and model development were conducted using Python (version 3.7.0) and the deep learning

platform PyTorch (version 1.10).
Cell Reports Medicine 5, 101785, October 15, 2024 e3
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