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Abstract—Current intelligent diagnosis systems are often
trained to diagnose a small number of diseases and lack the
ability of continually learning new disease knowledge. To have
such continual learning ability, the deployed intelligent system
needs to be continually updated based on training data of only
new diseases, without accessing old data of previously learned
diseaseue to privacy concerns and challenges in data sharing
across medical centers. In this study, a novel and effective prompt
learning strategy is proposed to help a pretrained and fixed Vision
Transformer (ViT) continually learn new diseases. In particular, a
set of unique prompts for each disease are effectively learned such
that discriminative disease features can be well extracted from
the fixed ViT under the instructions of prompts during feature
extraction, even though the ViT feature extractor is pretrained in
the natural image domain. Extensive empirical evaluations on two
medical image datasets and one natural image dataset demon-
strate the superior performance of the proposed method. The
source code is available at https://github.com/zhaoedf/CSPrompt.

Index Terms—Continual learning, Prompt learning, Disease
diagnosis

I. INTRODUCTION

Deep learning has been widely applied to intelligent diag-
nosis of various diseases [8]. It is desired for an intelligent
system to diagnose all possible diseases associated with at least
one body tissue, organ, or system. However, currently most
intelligent medical systems can diagnose just one or a few
diseases, although dozens or even hundreds of diseases may
exist even for one tissue (e.g., skin) or organ. Considering that
it is difficult to collect enough data of all diseases with limited
time and resources, one possible solution is to enable an
intelligent system to have the lifelong learning ability such that
it can continually learn to diagnose more and more diseases
over time, as human specialists do. Due to privacy concerns
and challenges in data sharing across medical centers, when a
deployed intelligent system later tries to continually learn new
knowledge with data of new disease(s), old training data of the
previously learned diseases are often not available. In this case,
catastrophic forgetting of old disease knowledge will probably
happen if the intelligent system is updated mainly based on
only the data of new diseases [15], [21].

In order to alleviate the catastrophic forgetting issue, multi-
ple strategies have been proposed recently. The regularization-
based strategy tries to keep model parameters crucial to old
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knowledge unchanged when the model continually learns new
knowledge [1], [7]. With more old knowledge learned and cor-
respondingly more parameters kept unchanged, it will become
more and more difficult for the model to learn new knowledge.
Different from regularization-based strategy, the distillation-
based strategy involves regularizing the model during the
training of new tasks based on prior task knowledge, trying
to preserve old knowledge in the updated model by keeping
output, particularly at top layer(s) of the model, unchanged
compared to the corresponding output of the old model [9],
[10]. Since the output of the old model may not faithfully
represent old knowledge if the input is only from classes
of new knowledge, it turns out that storing a small amount
of old data for each old class (i.e., rehearsal-based strategy)
can significantly improve the performance of the distillation-
based strategy in continual learning of new knowledge [5],
[15]. When real data of old knowledge are not available,
synthetic old data could be obtained with certain generative
models, although continually synthesizing high-fidelity data
of more and more old classes is a challenge [14], [16].
However, in numerous practical application scenarios, the
enduring retention of training data would lead to violations of
data privacy, while increasing the burden on memory cost. All
the above strategies change model parameters and therefore
old knowledge implicitly stored in model parameters probably
will be gradually forgotten over continual learning of more
and more new knowledge. Recent attempts have shown that
including fixed old feature extractor(s) or extremely using
the fixed single feature extractor in the updated model may
better preserve old knowledge during continual learning of
new knowledge [11], [20]–[22]. However, including more old
feature extractors in the model over multiple times of continual
learning would quickly expand the model, and simply using
the same old feature extractor during model update could
largely limit the capability of learning new knowledge.

Inspired by the recently developed prompt learning
paradigm in natural language processing [13] and its initial
applications in computer vision [19], we propose a novel
and effective class-specific prompt learning strategy for class
incremental learning under the condition that no data of
previously learned diseases is preserved during learning of new
diseases. Specifically, a set of visual instructions (i.e., prompts)
are learned for each new disease (i.e., class) during continual
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Fig. 1: The proposed prompt-based continual learning framework. Left: learnable class-specific prompts are included at certain
intermediate self-attention layers, and learnable class-shared prompts are included at the first one or two self-attention layers.
Both types of prompts will help the pretrained and fixed Vision Transformer extract discriminative features. Right: demonstrative
interaction between patch tokens and a class-specific prompt (see Eq. 2 and description).

learning, and such prompts are used as additional keys and val-
ues at certain self-attention layers to help a pretrained and fixed
Vision Transformer more effectively extract visual features
of diseases from input medical images. A novel mismatched
<input, prompt> design is proposed (Section II-B) to help
learn effective class-specific prompts. Extensive evaluations
on two medical image datasets and one natural image dataset
support that the proposed method outperforms state-of-the-art
methods in continual learning of new diseases.

II. METHOD

This study focuses on class-incremental learning (CIL) of
new diseases, i.e., a classifier is continually updated over
multiple rounds, with each round learning a certain number
of new classes (diseases). Notably, data pertaining to any
previously learned class is not preserved, and solely training
data relevant to newly introduced classes are available to
update the classifier at each round.

A. Prompt learning for CIL

The proposed CIL framework is built on any pretrained
and fixed Vision transformer (ViT) backbone [4]. The pre-
trained ViT is used as a feature extractor, and its output is
a feature vector representing the corresponding input image.
An expandable classifier head is attached to the ViT, with
ViT output as the input to the classifier head. The classifier
head can be simply a fully connected layer with a following
softmax operator. When a set of new classes are learned at
a new learning round, correspondingly a set of new output
neurons is added to the classifier head, and the new weight
parameters linking the ViT output and the new output neurons
will be learned. Since all learned classes share the same ViT
feature extractor during CIL and no data of old classes are
preserved during CIL, any change in the class-shared ViT
parameters when learning new classes would be based on only
the new classes’ training data and therefore would probably
only benefit the new classes but harm old ones. In order

to alleviate catastrophic forgetting of old classes’ knowledge
during continual learning of new classes, the pretrained ViT is
fixed across all the learning rounds in the proposed framework.
However, in this case, the output from the pretrained and
fixed ViT feature extractor may not be discriminative enough
between different classes of data, particularly when the ViT is
pretrained on the natural image domain (as in this study) and
applied to the medical image domain.

In order to resolve this dilemma, a class-specific prompt
learning strategy is proposed here (Figure 1). The basic idea
is that learnable class-specific prompt(s) is included in certain
self-attention layer(s) to instruct the ViT to extract more dis-
criminative features from the input. Each prompt is associated
with one specific class and consists of a number of learn-
able <key, value> vector pairs. Formally, denote by pc,l =
{kp

c,l,m,vp
c,l,m}Mm=1 the prompt for the c-th class at the l-th

self-attention layer, where M is the number of keys {kp
c,l,m}

and values {vp
c,l,m}, and denote by {ql,n,kl,n,vl,n}Nn=0 the

original set of <query, key, value> triplet inputs to the l-th
self-attention layer, where n = 0 corresponds to the special
class token and all the others (n = 1, . . . , N ) correspond
to the sequence of N image patch tokens. Note the triplets
{ql,n,kl,n,vl,n}Nn=0 are from the output of the previous self-
attention block, while the prompt pc,l implicitly represents
characteristics of the c-th class at the semantic level associ-
ated with the l-th self-attention layer and is part of model
parameters which will be learned during continual learning.
In ViT, the conventional self-attention function is defined as

zl,n = Vl σ(
KT

l ql,n√
d

) (1)

where zl,n is the self-attention output for the n-th token at
the l-th layer, and matrices Vl = [vl,0 vl,1 . . . vl,N ] and
Kl = [kl,0 kl,1 . . . kl,N ] are respectively the collection of
all value and key vectors of the N +1 input tokens at the l-th
layer. σ(·) is a softmax-based normalization function to ensure
that the degree of contributions of all N +1 values {vl,n}Nn=0



to the n-th token are summed to 1, and d is the length of
key or query vector. Compared to conventional self-attention,
the learnable class-specific prompt pc,l is used to modify the
self-attention function as follows

zc,l,n = [Vl V
p
c,l] σ(

[Kl K
p
c,l]

Tql,n√
d

) (2)

where zc,l,n is the self-attention output for the n-th token
at the l-th layer when the prompt of the c-th class is used,
and matrices Vp

c,l = [vp
c,l,1 vp

c,l,2 . . . vp
c,l,M ] and Kp

c,l =
[kp

c,l,1 kp
c,l,2 . . . kp

c,l,M ] are respectively the collection of the
M value and key vectors in the prompt pc,l at the l-th
layer. From Equation (2), it can be observed that the to-
be-learned class-specific visual characteristics ({vp

c,l,m,m =
1, . . . ,M}) in the prompt pc,l will be more or less embedded
in each token output zc,l,n, n = 0, . . . , N , depending on
how similar between the query (ql,n) of each token and
the keys ({kp

c,l,m,m = 1, . . . ,M}) of the prompt. Higher
similarity between token query and prompt key(s) leads to
more embedding of class-specific visual characteristics into
the token output, which in turn would lead to more class-
specific information in the output of the ViT feature extractor.
On the contrary, if there is little similarity between the token
query and prompt key(s), the class-specific prompt would not
affect the token output and subsequently the output of the
ViT feature extractor. As a result, if an input image contains
visual features of a certain class, a prompt of this class at
a certain self-attention layer would help the pretrained ViT
generate more class-specific feature output, and such output
would then help the classifier head more easily recognize the
class of the input.

Besides class-specific prompts, class-shared prompt(s) par-
ticularly at lower (e.g., the 1st and 2nd) self-attention layer
will also be investigated and empirically evaluated, consider-
ing its positive effect on continual learning in the previous
study [18]. It is speculated that such prompt(s) at the lower
layer(s) may help ViT extract class-shared low-level visual
features which have been widely observed in the lower lay-
ers of convolutional neural networks [18]. Such class-shared
prompt(s) could be particularly helpful when the ViT feature
extractor is pretrained on the natural image domain and then
applied to the medical image domain as in this study. For
example, even if certain low-level features of medical images
are crucial to discriminate between different medical classes
and such features can be extracted by the first one or two
layers in the ViT, they could be ignored at higher layers
if the ViT considers such low-level features negligible for
natural image classification. Therefore, class-shared prompt(s)
associated with low-level features in the downstream medical
domain may instruct the ViT to strengthen low-level medical
image features at lower layer(s), which in turn would likely
help the ViT pay more attention to (rather than ignore) such
low-level medical features at subsequent layers. In this case,
class-shared prompt(s) could improve the transfer learning
ability of the pretrained and fixed ViT particularly for low-

level features when the downstream task domain is different
from the original task domain for ViT pretraining.

B. Optimization and inference

Suppose the t-th learning round in CIL contains Ct classes,
and the CIL model will be updated to learn all the new Ct

classes of knowledge. Let Ct = {rt−1 + 1, . . . , rt−1 + Ct}
denote the set of new class indices, where rt−1 is the total
number of learned old classes before the t-th round, and Dc

denote the training set for any class c ∈ Ct. During model
update, weight parameters connecting to the new output neu-
rons in the classifier head, class-specific prompt(s) at certain
self-attention layer(s) for each new class, and class-shared
prompt(s) at the first one or two self-attention layers will be
optimized. Additional effort needs to be made to effectively
optimize class-specific prompts. For an input image x from
any class c ∈ Ct, the class-specific prompt(s) of class c can be
used to form a matched <input, prompt> pair, and the class-
specific prompt(s) of any different class c′ can be used to form
a mismatched <input, prompt> pair. If just matched <input,
prompt> pairs are used during model update, there exists a
risk of making the model lazy in the sense that the model
may simply use class-specific prompt(s) to predict the class
of input image, regardless of any visual information in the
input. In order to make the model use both input and prompt
information for prediction, we propose additionally using
mismatched <input, prompt> pairs during model update. In
particular, for any mismatched <input, prompt> pair, the
model is enforced to correctly predict the class of the input
as well. In this case, the mismatched class-specific prompt
would not provide information about the class of input, and
therefore the model has to learn to use visual information in
the input for accurate prediction. Based on the above analysis,
model update can be achieved by minimizing the expanded
cross-entropy loss L,

L = E{c,c′}∈Ct,c ̸=c′,x∈Dc

[
− log ŷc,c − log ŷc,c′

]
, (3)

where ŷc,c′ is the model output associated with class c when
the class-specific prompt(s) are from class c′. Note that since
there is no data of old classes involved in model update, and
weight parameters of old classes in the classifier head and old
class-specific prompts are fixed during model update, ŷc,c′ is
obtained from the softmax operator over only the logits of the
Ct new output neurons. In Eq. (3), the first cross-entropy loss
term (− log ŷc,c) corresponds to matched <input, prompt>
pairs, while the second cross-entropy loss term (− log ŷc,c′ )
corresponds to mismatched <input, prompt> pairs.

Once the model finishes the t-th round of continual learning,
it can be used to predict any test input as one of all rt
(i.e., rt−1 +Ct) learned classes so far. Specifically, given any
test input, the learned class-specific prompt(s) of every class
c ∈ {1, . . . , rt} is respectively paired with the input and the
prediction probability of class c is collected from the output



Fig. 2: Performance comparison between the proposed method and baselines on Skin40 (first row), TCGA30 (2nd row, first
two), and ImageNet-R (2nd row, last). The X-axis in each figure represents the accumulated number of learned classes. The
upper bound result (pentagon) is from the trained ViT with all classes of training data. All methods use a pretrained ViT-B/16.

of the unified classifier head. The class c∗ with maximum
prediction probability is selected as the predicted class, i.e.,

c∗ = max
c∈{1,...,rt}

ŷc,c . (4)

C. Comparison with relevant study

Our method is largely inspired by the recently developed
DualPrompt learning for CIL [18], but with significant dif-
ferences. First, DualPrompt proposes task-specific prompts
(i.e., multiple classes learned at each round share the same
prompts), while ours proposes class-specific prompts. Second,
DualPrompt learns to match each input with one of the task-
specific prompts based on a query function, while there is
no such complicated learning and matching process in our
method. Third, mismatched <input, prompt> pairs are novelly
designed and applied to learn class-specific prompts in our
method, which makes the optimization simpler and easier
and leads to more effective prompts for CIL. Fourth, during
inference, DualPrompt selects only one task’s specific prompts
for class prediction, while ours predicts based on each class’
prompts and selects the optimal class. Overall, ours has a
different learning and inference process and is simpler and
more effective than DualPrompt.

III. EXPERIMENTS

A. Experimental setup

The proposed CIL method was evaluated on two medical
image datasets Skin40 [12], [22] and TCGA30, and one natural
image dataset ImageNet-R [6] (Table I). The 40 data-balanced

TABLE I: Statistics of three datasets. ‘37~345’: the range of
the number of images of each class. [50, 7016] represents the
range of image height and width.

Datasets #Classes Training images per class Test images per class Image size

Skin40 [17] 40 50 10 [420, 1640]
TCGA30 [2] 30 800 200 256× 256

ImageNet-R [6] 200 37~345 4~88 [50, 7016]

classes with relatively more number of images in the SD198
skin disease dataset [17] were selected to form the Skin40.
TCGA30 is a set of histopathology image patches that were
sampled from slides of 30 cancers in The Genome Cancer
Atlas (TCGA). For each class, we randomly sampled training
and test slides at the patient level. After that, we sampled 800
patches from each class of training slides and 200 patches
from each class of test slides at a 10× magnification (1.00
µm/per pixel). All training images in Skin40 and TCGA30
were randomly cropped with the scale range [0.3, 1.0] and then
resized to 224× 224 pixels, followed by a random horizontal
flipping. ImageNet-R [6] contains 200 classes of artistic ren-
ditions derived from the original ImageNet dataset [3]. Note
that the classes in ImageNet-R are considered non-overlapped
with those in ImageNet [18], [19]. A validation set was
created by sampling 20% of the ImageNet-R training set for
hyper-parameter selection (e.g., layers to include prompts). All
training images in ImageNet-R were first resized to 256×256
pixels and then randomly cropped to 224×224 pixels, followed
by a random horizontal flipping.



Skin40 and ImageNet-R were split into multiple (e.g., 8,
10) subsets of non-overlapped classes, with each subset corre-
sponding to one learning round. These subsets were randomly
ordered and then fixed for evaluation of the proposed method
and baselines. The ViT feature extractor was pretrained on
ImageNet [3] and its parameters were fixed in continual
learning. One fully connected layer followed by the softmax
was used as the classifier head. Following DualPrompt [18]
and checked with the ImageNet-R validation set, class-shared
prompts were included in the first two self-attention layers,
and class-specific prompts were included in the 5-th and 7-
th self-attention layers. By default, M was empirically set to
30 for each class-specific prompt and 5 for each class-shared
prompt. When learning a set of new classes at each round,
AdamW optimizer was adopted, with initial learning rate 0.01,
weight decay coefficient 0.05, and batch size 64. The classifier
was trained for up to 50 epochs, with consistent training
convergence observed. Considering possible data imbalance
among classes, mean class recall (MCR) over all learned
classes so far after each round of continual learning was used
as the performance measure. Note that MCR is equivalent
to classification accuracy on a balanced dataset. For each
experiment, three runs were performed and the mean and
standard deviation of MCR were reported.

B. Quantitative evaluation

Effectiveness study: The effectiveness of our method was
evaluated by comparing it with representative CIL methods,
including LwF [10], EWC [7], PASS [23], L2P [19] and the
current SOTA of prompt-based method DualPrompt [18]. For
fair comparisons, no old data were used in these methods
during CIL, and all methods used the same ViT-B/16 [4]
backbone following previous work. A similar amount of
effort was taken to tune each baseline. Figure 2 shows that
our method outperforms all the baselines when the classifier
continually learns either 4, 8, or 10 rounds. On Skin40, the
primary medical image dataset, our method achieves signif-
icant performance gains. Specifically, under the 4-round, 8-
round, and 10-round settings (i.e., first row, left to right), our
method attained MCR of 63.25%, 52.75%, and 42.67% at
the final round. Compared to the current strongest baseline
DualPrompt, the improvements from our method are around
4% to 4.67%. This supports that our prompt learning approach
can effectively mitigate catastrophic forgetting in continual
learning of new disease categories. On another medical dataset
TCGA30 and a natural image dataset ImageNet-R, our method
similarly achieves superior performance, consistently surpass-
ing all baseline methods. This further verifies the generaliza-
tion capability and reliability of our method.
Ablation study: To check the effect of the key components
in our method, an ablation study was performed. As shown
in Table II, while solely adding class-shared prompts (second
row) slightly improves the continual learning performance
compared to the baseline (first row, only fine-tuning the
classifier head with the fixed ViT feature extractor), additional
inclusion of the class-specific prompts (third and fourth rows)

TABLE II: Ablation study on Skin40, with 5 classes learned
in each round.

Class-shared prompts ! ! !

Class-specific prompts ! ! ! !

Mismatched pairs ! !

MCR (%) 47.50 48.15 37.75 38.00 49.25 52.75

unexpectedly downgrades the performance. This is probably
because the model found a lazy way to predict class of training
data, i.e., based on only the class-specific prompt information.
In contrast, combining the mismatched <input, prompt> pairs
with the class-specific prompts (fifth row) results in a better
performance than the baseline, and additional inclusion of the
class-shared prompt further improves the performance (last
row). Note that class-specific prompts are involved in the
mismatched <input, prompt> pairs. Therefore, the last two
rows in Table II clearly support both class-specific prompts
and mismatched <input, prompt> pairs are crucial in helping
continual learning.

Fig. 3: Effect of the number (M ) of keys and values in class-
specific prompt on continual learning. Skin40 was used here,
with 5 classes learned in each learning round.

TABLE III: Sensitivity of the insert location of the pro-
posed class-specific prompt. The experiment was performed
on Skin40 with 5 classes learned in each round. ‘{a,b}’: class-
specific prompt is inserted at a-th and b-th layers. The bold
location {5,7} is determined by a grid search experiment on
ImageNet-R validation set.

Continuous layers Non-continuous layers Others

Location {3,4} {4,5} {5,6} {6,7} {7,8} {8,9} {3,5} {4,6} {5,7} {6,8} {8} {8,9,10,11}
MCR (%) 49.75 51.00 51.25 50.50 50.75 52.00 49.50 51.00 52.75 50.25 52.25 50.25

Sensitivity study: In our method, each class-specific prompts
consists of multiple (M ) keys and values. By varying M
from 1 to 40, the performance of our method changes in a
relatively small range (Figure 3) and is always better than the
best baseline, suggesting that our method is largely insensitive
to the choice of element number in a prompt. Besides, another
sensitivity study was performed to investigate the effect of the
layer position of class-specific prompt on model performance.
Regardless of prompt insertion between contiguous layers,
non-contiguous layers, solitary layers, or multiple continu-
ous layers, the variation in MCR fluctuated within a tight
range of 49.50% to 52.75% (Table III), exhibiting stability of
class-specific prompt in improving model performance. This
indicates that our method is largely insensitive to prompt



TABLE IV: Comparison with Dualprompt on ImageNet-R and Skin40 with three different model sizes. The best performance
is highlighted in bold.

ImageNet-R Skin40
Backbone ViT-S/16 ViT-B/16 ViT-L/16 ViT-S/16 ViT-B/16 ViT-L/16
DualPrompt [18] 57.25± 0.14 63.89± 0.20 70.92± 0.37 41.13± 2.4 48.08± 0.42 47.30± 0.80
Ours 58.22± 0.19 65.58± 0.21 68.36± 0.28 44.65± 0.92 52.75± 0.20 44.77± 0.68

insertion location. Furthermore, as can be seen from Table IV,
our method consistently outperforms DualPrompt on both
ViT-S/16 and ViT-B/16 backbones [4], further exhibiting its
superiority. Our method falls slightly behind DualPrompt when
using the larger ViT-L/16 model. One possible reason is that
the prompts may not be optimal to guide feature learning in
the very deep ViT-L/16 model with the prompts inserted in
the first few layers.

IV. CONCLUSION

In this study, we propose a novel prompt learning strategy
for class-incremental learning. Under the realistic condition of
not storing any old data, our method outperforms state-of-the-
art methods on multiple datasets. Prompt learning provides
a new way to make use of well pretrained models for con-
tinual learning, and the extension of the proposed method to
lesion detection and segmentation will be explored in future
work. Pretraining the ViT using relevant medical image data
may even further boost the performance, which will also be
investigated in future work.
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