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Abstract—Current intelligent diagnosis systems struggle to
continually learn to diagnose more and more diseases due to
catastrophic forgetting of old knowledge when learning new
knowledge. Although storing small old data for subsequent
continual learning can effectively help alleviate the forgetting
issue, the heavy data imbalance between old classes and to-
be-learned new classes in classifier training often causes biased
prediction towards the new classes just learned by the updated
classifier. In this study, an outlier detection technique is novelly
applied to train an additional expert classifier for new classes
to help alleviate the class imbalance issue and discriminate the
learned new classes from old classes during inference (instead
of the training phase). Specially, the stored small data of old
classes are considered as outliers during training the expert
classifier, such that the output probability distributions from the
expert classifier are expected to be obviously different between
test data of the old classes and those of the new classes. Such
difference between old classes and new classes can be used to
fine-tune the original output from the updated classifier which
is responsible for prediction of all learned (old and new) classes.
During inference, a novel ensemble strategy is proposed to
combine the predictions from the updated classifier, the expert
classifier, and the previously learned old classifier. The proposed
learning and inference framework can be easily combined with
existing continual learning strategies. Empirical evaluations on
three medical image datasets and one natural image dataset show
that the proposed framework can effectively improve continual
learning performance.

Index Terms—Continual learning, Outlier exposure, Ensemble
model

I. INTRODUCTION

One obstacle of deploying current intelligent diagnosis
systems is that each system often can only diagnose a very
limited number of diseases and can not cover all diseases for
a specific organ or tissue. This is because it is difficult to
collect training data for all possible diseases (particularly rare
diseases) with limited resource [11], [14]. Thus, enabling an
intelligent diagnosis system to have the lifelong or continual
learning ability, i.e., incrementally learning to diagnose more
and more diseases over time as human clinicians, may be a
more practical solution. However, catastrophic forgetting of
old knowledge has been widely observed when intelligent
systems learn new knowledge [4], [8], [9], [16], [24]

Corresponding author: wangruix5@mail.sysu.edu.cn

Initial
Data

Main
Model

Old Class
Expert

Session 1

New Class
Expert

Main
Model

New 
Data

Memory

Old Class
Expert

New Class
Expert

Main
Model

New 
Data

Memory

Session 2 Session 3

Fig. 1. Overview of the proposed continue learning framework. At the first
learning session, a classifier (Main Model) is trained for the first set of classes.
At each following session, the classifier (Main Model) for both new and
old classes is updated, and an expert classifier (New Class Expert) for new
classes is also trained with outlier exposure. The main model from the previous
session is used as the expert (Old Class Expert) for old classes. The three
models are ensembled for prediction at each session.

There has been much effort attempting to alleviate the
catastrophic forgetting issue in continual learning mainly built
on deep learning models. Among them, perhaps the most
effective strategy is to integrate all the previously learned old
models into the new model [12], [22]. However, integrating old
models would quickly expand the model scale over multiple
sessions of continual learning [5]. Currently, most studies
in continual learning assume that model scale is kept from
increasing substantially. In this case, keeping a small subset of
old data for each class has been proven effective in keeping old
knowledge from fast forgetting [1]–[3], [7], [13], [17], [18].
However, the heavy data imbalance between old classes and
new classes at each learning session often leads to prediction
bias towards new classes during inference [21], [25]. To
alleviate the class imbalance issue, BiC [21] adds a bias
correction layer to correct the model’s output, where the layer
is trained on a separate validation set. WA [25] corrects the
biased weights in the last fully connected layer by aligning
the norms of weight vectors for new classes to those for
old classes. These class rebalancing strategies were evaluated
only on natural images and their effects on medical image
classification are still unclear.

In this study, one outlier detection strategy is novelly applied
to the continual learning task to help alleviate the class imbal-
ance issue and discriminate the learned new classes from old
classes during inference (rather than during the training phase).
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Fig. 2. The proposed framework for training and inference at a single session.
Left: training phase. Right: inference phase.

Specially, at each incremental learning session, an additional
expert classifier is trained with Outlier Exposure (OE) [6], [15]
to recognize the new classes appearing at the current session
and detect outliers not belonging to the new classes. During
expert classifier training, the kept small subset of old data
for each old class were used as outliers. During inference,
the expert classifier for the new classes (‘New Class Expert’
in Figure 1), the updated classifier for both old and new
classes (‘Main Model’ in Figure 1), and the previously trained
classifier for old classes (‘Old Class Expert’ in Figure 1) are
novelly ensembled to predict class of any new (test) data.
Empirical evaluations on three medical image datasets and
one natural image dataset confirmed the effectiveness of the
proposed framework for continual learning.

II. METHODOLOGY

This study aims to alleviate the bias of incrementally trained
classifier towards relatively new classes. Such bias is mainly
from the heavy imbalance in training data between new classes
and previously learned old classes, where only very limited
number of old classes data are allowed to be stored during
continual learning. Different from previous class rebalancing
strategies, an outlier exposure technique was novelly applied
to the training of an additional expert classifier which is part
of a new ensemble model for more fairly and discriminative
prediction between old and new classes.

A. A baseline framework for class-incremental learning
Class-incremental learning tries to make a classifier incre-

mentally learn more and more classes over sessions. For a
new session of learning, suppose the classifier has previously
learned m old classes and will learn n new classes with the
training dataset D = {(xi,yi), i = 1, . . . , N}, where D is the
collection of previously stored small subset of data for each old
class and the whole set of training data for each new class. xi

is the i-th training image and the one-hot vector yi represents
the corresponding class label. A general continual learning
framework is based on the knowledge distillation from the
previous old classifier (‘Old Class Expert’ in Figure 2) to the
current classifier (‘Main Model’ in Figure 2) when the current
classifier learns the n new class in addition to the previously
learned m old classes. In such a learning framework, the
current classifier is trained by minimizing the loss L(θ;D),

L(θ;D) = Lc(θ;D) + λLd(θ;D) , (1)

where θ denotes the model parameters of the current classifier,
and λ is a coefficient constant to balance the two loss terms
Lc(θ;D) and Ld(θ;D). The classification loss Lc(θ;D) helps
the current classifier learn the n new classes (and the m old
classes), and the distillation loss Ld(θ) helps the new classifier
well keep knowledge of old classes [17], respectively with the
typical form

Lc(θ;D) = − 1

N

N∑
i=1

m+n∑
j=1

yij log ŷij , (2)

Ld(θ;D) = − 1

N

N∑
i=1

m∑
j=1

pij log p̂ij , (3)

where yij is the j-th component of the one-hot class label yi,
and ŷij is the j-th output element of the current classifier for
the input image xi. pij is the j-th component of the output
pi from the temperature-tuned softmax operation on the logit
vector of the old classifier, and similarly p̂ij is that from the
corresponding logit part of the current classifier. Note that
the distillation loss may have more sophisticated forms as in
PODNet [2] and UCIR [7], which is also considered in the
empirical evaluation below.

Since only very limited number of old training data are
available when training the current classifier as in previous
studies [2], [7], [17], [21], [25], the training dataset is domi-
nated by the n new classes. Although knowledge distillation
can largely help keep knowledge of old classes in the current
classifier, the heavy data imbalance between the old classes
and the new classes often causes the new classifier to have
biased prediction towards new classes during inference, which
partly leads to worse classification performance on old classes.

B. Expert of new classes with outlier exposure

To alleviate the biased prediction towards new classes due
to the data imbalance, we propose training an additional expert
classifier (‘New Class Expert’ in Figure 2) for new classes by
making use of not only the training data of the new classes
but also the available limited data of the old classes. The
idea is to consider data of the old classes as outliers for the
expert classifier, and outlier exposure to the expert classifier
during training will help the expert classifier more easily detect
whether a new data is an outlier (i.e., from one of the old
classes) or not during inference. In training, the objective is
to obtain an expert classifier which has confident predictions
(i.e., close to one-hot output) for data from the new classes
but unconfident predictions (e.g., close to uniform output) for
data from the old classes. This can be achieved by minimizing
the loss Le(ω;D),

Le(ω;D = Dn ∪Dm) = Lc(ω;Dn) + βLo(ω;Dm) , (4)

Lc(ω;Dn) = − 1

Nn

Nn∑
i=1

n∑
j=1

yij log qij , (5)

Lo(ω;Dm) = − 1

Nm

Nm∑
i=1

n∑
j=1

uj log qij , (6)
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where ω denotes the model parameters of the expert classifier,
Lc(ω;Dn) is the cross-entropy loss on the training set Dn of
the n new classes, and Lo(ω;Dm) is the cross-entropy loss
on the training set Dm of the m old classes specially with the
expected output being uniform (i.e., uj = 1/n) for each old
class data. qij denotes the j-th output element of the expert
classifier for the i-th input data from either Dn or Dm. Nn and
Nm denote the number of data in Dn and Dm respectively,
and β is a coefficient constant to balance the two loss terms.

After the expert classifier is well trained, then during
inference, if a test data is from certain old class, the output
from the expert classifier would be more likely close to a
discrete uniform distribution. Such output information from
the expert classifier can obviously help the main model reduce
its biased prediction towards new classes for data of old
classes, e.g., based on an ensemble strategy (See Section II-C
below). Besides helping reduce biased prediction of data from
old classes towards the new classes, the expert may also help
reduce the possible mis-prediction from the new classes to the
old classes. For example, if a test data is from one of the
new classes, the prediction from the expert classifier is more
likely close to a one-shot vector. The ensemble of such peaky
output and the corresponding output from the main model
would more likely cause higher output probability for one of
the new classes, thus reducing the possibility of predicting the
data as one old class.

C. Ensemble model for prediction

During inference, besides the expert classifier for the n
new classes, the previous classifier (i.e., ‘Old Class Expert’ in
Figure 2) for the m old classes can also be used to further help
the current classifier (i.e., ‘Main Model’) alleviate the biased
prediction. In particular, if a test data is from one old class, the
output of the previous classifier would be more likely close to
a one-hot vector and the ensemble of such peaky output and
the corresponding output part from the main model would
more likely cause higher output probability for one of the
old classes. With this consideration, we propose an ensemble
strategy based on the three models (i.e., main model, old class
expert, and new class expert) for the final prediction o of any
new data, i.e.,

o = γ0[ŷ
⊺
1:m + γ1p

⊺, ŷ⊺
m+1:m+n + γ2q

⊺]⊺ , (7)

where ŷ1:m denotes the first m output elements from the main
model for the m old classes, and similarly ŷm+1:m+n denotes
the last n output elements for the n new classes. p and q are
the output from the previous classifier and the expert classifier
respectively. γ1 and γ2 are two coefficient constants to balance
the contributions from the three classifiers. Considering that
the number of old classes is often larger than that of the new
classes (i.e., m > n), the influence of each element from
q in average would be larger than that from p on the final
prediction, which would cause biased prediction towards the
n new classes if γ1 = γ2. To reduce such unsatisfactory bias,
γ1 should be set a relatively larger value (i.e., γ1 > γ2). γ0 =

TABLE I
DATASETS USED IN EXPERIMENTS.

Datasets Modality Classes Train Set Test Set Image size Memory size
Skin40 Dermoscopy 40 2,000 400 [420, 1640] totally 50
Skin8 Dermoscopy 8 3,555 705 [600, 1024] totally 50

MedMNIST8 Hybrid 51 483,201 79,444 28× 28 40 per class
CIFAR100 Natural 100 50,000 10,000 32× 32 20 per class

1
1+γ1+γ2

is a normalization factor to assure the final prediction
o is a discrete probability distribution.

It is worth noting that our approach is different from the
related dual distillation (‘DDistill’) method [13]. In DDistill,
the new class expert is trained only with new classes of data
and is utilized to help train the main model. In contrast, our
approach additionally uses the kept old data to train the New
Class Expert for outlier detection, and the New Class Expert is
utilized as part of the ensemble model during inference in our
approach. The novelty of our approach is three-fold. First, it
novelly applies an outlier detection technique to the continual
learning task, which can help alleviate the class imbalance
issue and discriminate the learned new classes from old classes
during inference. Second, partly based on the outlier detection
ability of the New Class Expert, a novel ensemble strategy
is proposed by combining the Old Class Expert, the New
Class Expert, and the Main Model. Third, our approach can
be used as a plug-in to easily combine with existing continual
learning methods to boost learning performance, as shown in
the following experiments.

Fig. 3. The classification performance over learning sessions with the protocol
B0-4 (Left), B0-8 (Middle) and B20-6 (Right) respectively on Skin40.

III. EXPERIMENT

A. Experimental setting

Datasets: Four public datasets were used to evaluate the
performance of the proposed class-incremental learning frame-
work (Table I). While data are balanced across classes in
Skin40 [19] and CIFAR100 [10], Skin8 and MedMNIST8
are not. Skin8 is a 8-class dataset which comes from
the classification challenge of dermoscopic images held by
ISIC’2019 [20]. Due to highly class-imbalanced in the original
dataset, 628 images were randomly selected from six larger
classes and all images (fewer than 628) were kept for the
other two smaller classes. MedMNIST8 contains 8 different
datasets from MedMNIST [23], including PathMNIST, Der-
maMNIST, OCTMNIST, PneumoniaMNIST, BreastMNIST,
BloodMNIST, TissueMNIST and OrganAMNIST. Each of the
8 datasets contains different number of images with a different
imaging modality, which is challenging for continual learning.
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TABLE II
CONTINUAL LEARNING PERFORMANCE ON SKIN8 AND SKIN40. EACH SUBSCRIPT IS THE STANDARD DEVIATION OF MCRS OVER THREE RUNS.

Methods Skin8 B0-4 Skin40 B0-4 Skin40 B0-8 Skin40 B20-6
Avg Last Avg Last Avg Last Avg Last

iCaRL 55.2±6.39 34.7±3.10 57.9±0.63 39.1±2.01 49.7±1.63 27.5±1.48 40.6±1.61 26.4±0.81

Ours (iCaRL) 56.1±6.41 36.4±2.55 62.2±0.73 47.4±1.65 53.6±1.82 32.1±2.11 46.6±2.47 29.8±1.77

UCIR 58.4±5.17 35.6±2.40 52.0±2.11 30.3±2.35 44.5±1.53 23.3±1.82 38.7±2.87 26.6±1.15

Ours (UCIR) 61.5±6.64 40.7±2.21 58.3±3.17 41.4±2.98 50.2±1.23 27.3±0.85 46.2±1.97 30.8±1.71

BiC 54.7±4.65 27.1±3.00 51.5±1.46 29.1±1.91 42.4±3.76 24.5±1.50 36.7±2.61 22.5±2.36

Ours (BiC) 59.2±4.18 37.8±1.35 56.8±1.21 40.8±0.76 46.2±2.79 25.7±1.90 39.3±2.00 22.8±0.76

PODNet 58.0±6.53 35.2±3.07 56.7±1.42 34.9±2.48 45.0±2.68 18.6±1.69 38.4±1.44 17.6±1.15

Ours (PODNet) 59.1±5.97 36.1±3.49 61.0±3.03 43.7±2.05 48.7±2.06 23.8±1.08 44.8±1.44 21.4±3.76

DDistill 55.8±1.78 34.9±1.79 52.2±1.31 34.2±1.26 48.6±0.21 29.1±2.40 42.5±0.45 26.7±2.80

Ours (DDistill) 56.2±4.96 36.5±1.32 57.2±1.09 37.9±1.39 49.5±1.21 29.9±2.29 44.2±1.70 30.8±1.78

TABLE III
CLASSIFICATION PERFORMANCE (MCR) FOR THE OLD CLASSES LEARNED
IN THE FIRST SESSION (SESSION 1) OVER LEARNING SESSIONS WITH THE

SKIN40 B0-4 PROTOCOL.

Mothod Session 1 Session 2 Session 3 Session 4

iCaRL 79.0±1.00 54.7±4.04 47.3±4.93 38.0±4.00

Ours (iCaRL) 79.0±1.00 67.3±3.51 48.0±4.36 39.0±6.00

UCIR 80.7±1.53 50.3±5.51 24.3±1.53 15.7±3.06

Ours (UCIR) 80.7±1.53 51.3±4.73 49.0±5.57 31.0±2.65

BiC 80.3±2.02 61.3±6.43 32.7±2.89 31.0±1.73

Ours (BiC) 80.3±2.02 67.3±1.53 51.3±6.66 40.0±2.65

PODNet 81.0±3.61 58.7±6.81 40.7±5.13 22.3±4.04

Ours (PODNet) 81.0±3.61 72.0±8.66 57.3±6.11 32.0±5.57

DDistill 80.7±2.08 46.0±5.57 39.3±4.04 23.7±1.53

Ours (DDistill) 80.7±2.08 61.0±2.00 51.3±5.69 35.3±4.62

TABLE IV
CONTINUAL LEARNING PERFORMANCE ON CIFAR100 AND

MEDMNIST8.

Methods CIFAR100 B0-10 CIFAR100 B0-5 MedMNIST8
Avg Last Avg Last Avg Last

Avg Last

iCaRL 55.5±0.71 32.6±1.37 61.8±1.04 42.9±1.22 33.4±2.13 12.6±1.85

Ours (iCaRL) 58.6±0.65 36.9±1.30 66.0±1.08 49.3±1.42 37.4±1.98 13.4±1.13

UCIR 56.9±0.76 43.4±0.85 62.9±1.23 49.5±0.78 42.4±1.93 31.9±5.73

Ours (UCIR) 60.0±0.75 45.6±1.10 64.4±1.45 51.2±1.03 53.5±1.75 35.2±7.15

BiC 56.2±2.36 41.5±1.13 61.2±1.52 45.4±2.78 56.9±0.90 49.0±4.75

Ours (BiC) 57.6±2.31 42.5±0.99 64.3±1.67 47.1±3.37 62.2±0.12 58.7±2.23

PODNet 55.0±1.02 39.4±0.17 64.0±0.84 48.9±0.50 46.7±1.28 42.4±3.12

Ours (PODNet) 59.6±1.04 41.5±0.74 68.3±0.83 54.4m0.45 54.5±0.87 45.1±0.87

DDistill 57.9±1.80 41.8±0.36 59.6±1.65 45.6±0.92 63.3±0.55 57.4±0.32

Ours (DDistill) 65.7±1.42 46.2±1.11 68.7±1.09 52.7±0.79 64.9±0.80 60.2±0.46

Protocol: Our method was evaluated mainly based on two
widely adopted protocols. The first protocol (with format B0-
T ) is to split the dataset into T subsets, each of which is for
one learning session and contains the same number of classes.
The second protocol (with format Bα-T ) is to split the dataset
into a larger subset containing α classes for the first learning
session and the other T − 1 smaller subsets for the remaining
T − 1 learning sessions, with the same (but smaller than α)
number of classes contained in each smaller subset. However,
for MedMNIST8, each of the 8 pre-defined datasets is used

TABLE V
ABLATION STUDY OF THE PROPOSED FRAMEWORK.

Main. Old. New. Skin40 B0-4 Skin40 B0-8 Skin40 B20-6
Avg Last Avg Last Avg Last

✓ 56.7±1.42 34.9±2.48 45.0±2.68 18.6±1.69 38.4±1.44 17.6±1.15

✓ ✓ 58.1±2.47 40.1±0.36 47.6±2.79 23.1±0.69 42.7±1.37 20.3±2.17

✓ ✓ 59.8±2.94 38.9±2.15 48.5±2.18 22.4±1.65 42.5±0.63 20.3±3.33

✓ ✓ ✓ 61.0±3.04 43.7±2.05 48.7±2.06 23.8±1.08 44.8±1.44 21.4±3.76

for a learning session. Following iCaRL [17], a small number
of images for each old class (Table I, ‘Memory’) were selected
and updated using the herding strategy.
Implementation details: For the classifier backbones,
ResNet-18 was adopted on Skin40 and Skin8, and ResNet-
32 was adopted on CIFAR100 and MedMNIST8. In training,
stochastic gradient descent (SGD) optimizer with initial learn-
ing rate 0.01, weight decay (0.0005), and cosine annealing
scheduling adopted. Batch size was 16 for two skin datasets
and 128 for the other two. All models were trained up to 250
epochs and the convergence of training was consistently ob-
served. Hyper-parameters were empirically set, with λ = 1.0,
β = 0.5, γ1 = 1.0, and γ2 = 0.7 for all experiments on
all datasets. For evaluation, the mean class recall (MCR) over
all learned classes after each session of continual learning,
including the MCR at the last learning step (‘Last’), and the
average MCR over all learning sessions (’Avg’) were used as
the performance measure. The mean and standard deviation of
MCR over three runs were reported for each experiment.

Fig. 4. Sensitivity study on Skin40. Left: with memory size 100 and protocol
B0-4. Middle and Right: with protocol B0-8.

B. Evaluation of the proposed framework
The proposed learning and inference framework was eval-

uated by comparing with state-of-the-art continual learning
methods including iCaRL [17], UCIR [7], BiC [21], POD-
Net [2], and DDistill [13]. All the strong baseline methods
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were performed with suggested hyper-parameter settings in
the original studies and evaluated on the same orders of
continual learning over three runs for each experiment. The
same memory buffer setting was adopted as mentioned above.
For fair comparison, each baseline was compared to the
corresponding version which used the same baseline as part of
our method. Note that the traditional multi-class head instead
of the neareast class mean was used in iCaRL during inference
in order to faily compare with our method. As Table II shows,
each version of our method outperforms the corresponding
strong baseline with all learning settings on the two skin
datasets Skin8 and Skin40. As an example, Figure 3 shows
the classification performance over the course of continual
learning based on the iCarL baseline, which consistently sup-
ports that the proposed framework helps improve the continual
learning. Table III summarizes the classification performance
for the first set of old classes learned at the first session over
the continual learning process. It can be observed that our
method always performs better than the corresponding strong
baseline method on the old classes, further confirming that
our method can help alleviate the catastrophic forgetting of
old knowledge. What is more, the boosted performance by
our method on the CIFAR100 dataset and the challenging
MedMNIST dataset (Table IV) suggests that our method can
be well generalized to natural imaging domain and even hybrid
imaging domains.

C. Ablation and sensitivity studies

To further confirm the effectiveness of the proposed frame-
work, an ablation study was performed by removing each
component of the framework. As demonstrated in Table V,
both New Class Expert (‘New’ in Table V) and Old Class
Expert (‘Old’) help the Main Model (‘Main’) improve the
continual learning performance. In addition, the effectiveness
of the proposed framework is not limited to specific hyper-
parameter settings. For example, when varying memory size
from 50 to 100 (Figure 4, Left) or the hyper-parameters γ1
and γ2 (Middle and Right) within a relatively large range re-
spectively, our method always outperforms the corresponding
baseline, confirming the stability of the proposed framework.

CONCLUSION

In this study, an outlier detection technique was novelly
applied to help improve the class-incremental learning per-
formance, mainly by training an additional expert classifier
with outlier exposure and then ensembled with the main
model and the previous old model during inference. Extensive
evaluations on two medical image datasets and one natural
image dataset consistently support that the proposed class-
incremental learning framework is effective and can be easily
combined with existing strategies as a plug-in component. Fu-
ture work includes investigation of alternative outlier detection
strategies for continual learning and its application in practical
intelligent diagnosis systems.
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