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An Asymmetric Distance Model for Cross-view
Feature Mapping in Person Re-identification

Ying-Cong Chen, Wei-Shi Zheng, Jian-Huang Lai, and Pong C. Yuen

Abstract—Person re-identification, which matches person im-
ages of the same identify across non-overlapping camera views,
becomes an important component for cross-camera-view activity
analysis. Most (if not all) person re-identification algorithms are
designed based on appearance features. However, appearance
features are not stable across non-overlapping camera views
under dramatic lighting change, and those algorithms assume
that two cross-view images of the same person can be well
represented either by exploring robust and invariant features
or learning matching distance. Such an assumption ignores the
nature that images are captured under different camera views
with different camera characteristics and environments, and
thus mostly there exists large discrepancy between the extracted
features under different views. To solve this problem, we formu-
late an asymmetric distance model for learning camera-specific
projections to transform the unmatched features of each view
to a common space where discriminative features across view
space are extracted. A cross-view consistency regularization is
further introduced to model the correlation between view-specific
feature transformations of different camera views, which reflects
their nature relations and plays a significant role in avoiding
overfitting. A kernel cross-view discriminant component analysis
is also presented. Extensive experiments have been conducted to
show that asymmetric distance modeling is important for person
re-identification, which matches the concerns on cross-disjoint-
view matching, reporting superior performance as compared to
related distance learning methods on six publically available
datasets.

Index Terms—Person re-identification, cross-view matching,
visual surveillance
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Fig. 1. Illustration of cross-view feature discrepancy problem and our method.
These images are selected from the SYSU dataset [1]. After feature extraction,
we perform PCA for visualization. It shows that the extracted features are
highly divergent, so that the distributions of person images of two views are
very distinct and thus the re-identification is extremely difficult. Our method
seeks for good view-specific mappings that project the original feature to
a common space and make re-identification more reliable. After the feature
projection induced by the proposed asymmetric distance model, the person
images of two views are more likely to match. To model the correlation nature
of different projections, a consistency regularization is imposed to restrict the
difference of the projections.

I. INTRODUCTION

Nowadays, camera network has been widely deployed in
public infrastructure such as airports, railway stations, hos-
pitals for surveillance. Due to economical issue, there are
always non-overlapping field between camera views. It then
challenges tracking of people and activity prediction over non-
overlapping camera networks. Hence it is critical to re-identify
a target person when he/she reappears in another camera view.
Such a problem is called the person re-identification.

However, appearance of a pedestrian would change dramat-
ically across camera views because the environment and cam-
era orientations can be totally different. There are two main
feature discrepancy problems: 1) the view-wise discrepancy
and 2) the pedestrian-wise discrepancy. The view-wise discrep-
ancy is caused by environment changes such as illumination,
the white balance of camera, etc, and the pedestrian-wise
discrepancy is caused by pedestrian himself/herself such as
those with backpacks or unzipped jackets as well as significant
pose changes (see Fig. 2(a) and (b)).

Alleviating the appearance changes across non-overlapping
camera views includes 1) seeking discriminative and robust
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(a) CUHK01 (b) VIPeR (c) PRID450S (d) SYSU

(e) CAVIAR4REID (f) RAiD(1-3) (g) RAiD(1-4) (h) RAiD(3-4)

Fig. 2. Typical examples of the datasets and sample pairs with view-wise discrepancy or pedestrian-wise discrepancy. Images of the first row of each subfigure
were captured by camera a and while images of the second were captured by camera b. Subfigure (a) illustrates the image pairs whose disagreement is more
caused by the environmental changes. Subfigure (b) illustrates the images whose disagreement is more caused by the pedestrian himself/herself. Subfigure
(c)-(h) illustrates images whose disagreement are caused by both pedestrian himself and environmental changes.

image descriptor [2]–[4], 2) learning reliable distance/subspace
models [5]–[9], and 3) preprocessing model such as bright
transfer model [10]–[12] and histogram equalization [2], [3].
The first two approaches implicitly assume that one can select
a set of features that do not change dramatically. However,
appearance could vary dramatically due to indoor/outdoor
lighting and pose variations. As such, images of the same
person from different camera views will look quite different.
Although distance learning methods try to select features
robust to those changes, most of these features are extracted
based on appearance, especially color features [13] which
would be largely affected by illumination or camera charac-
teristics (e.g., white balance). However, the existing methods
on using distance learning in person re-identification are all
focusing on symmetric modeling, i.e. most of them are based
on the following distance form between any two samples xi
and xj :

d(xi,xj) =
√

(xi − xj)TM(xi − xj)

= ||UTxi −UTxj ||2,
(1)

where the positive semidefinite matrix M is factorized into
M = UUT . 1 The symmetric modeling intrinsically assumes
that the same feature transformation is applied to all the
camera views, and this ignores feature discrepancy caused
by different nature of images captured under different cam-
era views. Since there exists feature discrepancy problem
across non-overlapping camera views due to view-wise and
pedestrian-wise discrepancy, the conventional unitary projec-
tion matrix learning in existing distance/subspace learning
methods [5]–[7], [16]–[21] could discard those features with

1Conventionally, some works such as [5], [14] directly learn M under the
positive semidefinite constraint, and others like [6], [15] learn U , where the
learned distance is equivalent to the Euclidean distance of the transformed
features. As such, U can be viewed as extracting robust and discriminative
transform from the original input space.

large discrepancy which may be discriminant during the cross-
view matching. Sec. III-A will give the details of this analysis.

In this paper, we propose an asymmetric distance model for
person re-identification, i.e. we generalize the symmetric form
in Eq. (1) and take the view label into account by considering
the model based on the following asymmetric form:

d({xp
i , p}, {x

q
j , q}) = ||U

pTxp
i −U

qTxq
j ||2, (2)

where p and q are the labels of two different camera views
and always Up 6= U q . Essentially speaking, we form the
asymmetric learning through learning Up and U q , which
we call the cross-view feature transformation. We hold an
assumption that one can seek a latent common space such
that the extracted features across different camera views for the
same person become more similar and meanwhile for different
persons they become more dissimilar. Based on this assump-
tion, we develop a supervised asymmetric distance learning
model. We also observe that albeit discrepancy exists across
disjoint camera views, there could exist relation between the
contents captured by any two camera views, because of the
existence of the same person to match and probably similar
indoor/outdoor environments. Hence, the discrepancy between
feature transformations Up and U q should be controlled. To
this end, we introduce a cross-view consistency regularization
into the cross-view model in order to constrain the difference
of view-specific projections, so as to implicitly embed the
relation between cross-view images into the distance learning
model. Based on the above ideas, we develop a new cross-
view matching algorithm for person re-identification, called
the Cross-View Discriminant Component Analysis (CVDCA).

In summary, this paper makes the following contributions:
• We propose and develop a new asymmetric distance

learning model, called the cross-view discriminant com-
ponent analysis (CVDCA) algorithm to transform the
features under different views to a common space for
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person re-identification. The proposed method addresses
the feature discrepancy problem by view-specific map-
pings and models the correlation of different views by a
consistency regularization. We also experimentally show
that this asymmetric distance model performs much better
than the symmetric ones.

• The linear CVDCA is further extended to kernel version
and kernelized CVDCA is then proposed.

Extensive experiments have been conducted to demonstrate
that the proposed CVDCA and KCVDCA can address the
feature discrepancy problem in person re-identification much
better.

II. RELATED WORK

In order to obtain robust and discriminative representation
of pedestrians across different camera views, various methods
were proposed to extract color or texture features. Zhao et
al. [3] [22] proposed salience-based approaches for person
re-identification in which patch matching is employed with
adjacency constraint to handle the pose misalignment problem.
Later, Zhao et al. [2] proposed mid-level filter which automat-
ically discovers patch clusters was also proposed. However,
since color features are used in patch matching, this processing
may not be optimal when illumination of different views
varies dramatically. Yang et al. [4] proposed a novel salient
color name based color descriptor (SCNCD) for person re-
identification. However, such a descriptor may be divergent of
each view if the lighting of different camera views differs to
an extent. Kviakovsky et al. [23] proposed an illumination-
invariant color feature based on Log-Chromaticity color space
and shape context. However, this method highly depends
on high-quality mask, which is usually unavailable in real-
world applications. There exist color calibration methods [10]–
[12] that aim at learning bright transfer functions (BTFs) to
establish a mapping of brightness value between two camera
views and thus the gap between them is reduced. However, the
cross-camera-view discrepancy is not only caused by lighting.
Also, because of incomplete ranges of color value found in
the training data, the mapping function may contain many-to-
one color correspondence [11], which would cause the loss
of useful information. Another approach to deal with the
histogram feature mismatch problem is feature warps (FW)
[24]. The warp functions are solved by aligning the feature
histograms between two camera views, and then they are used
as image pair descriptors. Note that this method uses the
principles of dynamic time warping to align histograms of
each image pair, which implicitly assumes that the divergence
of histograms results from histogram shifting.

Due to the difficulty of designing reliable image descriptors
across different camera views, some distance/subspace learn-
ing methods have been proposed to reduce the variation across
views. Zheng et al. [8] formulated person re-identification as a
relative distance comparison learning problem by maximizing
the probability that relevant samples have smaller distance
than the irrelevant ones. Liao et al. [25] proposed a logistic
metric learning approach with PSD constraint and asymmetric
sample weighting strategy. Li et al. [18] proposed a Locally-

Adaptive Decision Function (LADF) to jointly learn the dis-
tance matrix and the locally adaptive threshold. Kostinger et al.
[17] proposed a simple and effective distance learning called
KISSME to conduct hypothesis test on similar/dissimilar pairs.
Later, Tao et al. [26] improved KISSME by introducing
minimum classification criterion and smoothing technique in
order to better estimate the small eigenvalue of the covariance
matrix. Liao et al. [27] proposed the Cross-view Quadrat-
ic Discriminant Analysis (XQDA) that has similar idea of
KISSME but can jointly learn a low-dimension subspace and a
metric. Mignon et al. [6] proposed PCCA to learn a projection
with sparse pairwise similarity/dissimilarity constraints. Later,
Xiong et al. [28] proposed the regularized PCCA (rPCCA) to
maximize the inter-class margin and avoid overfitting. Pedaga-
di et al. [9] applied local fisher discriminant analysis (LFDA)
to project the raw features to a discriminative subspace so that
the between-class separability is maximized while the multi-
modality structure is preserved, and a nonlinear extension
using kernel trick of this work was reported in [28]. Paisitkri-
angkrai et.al [29] proposed a structural learning framework to
combine multiple pre-learned distances, which leads to better
performance than using an unitary distance measure. All these
methods are symmetric-based, and the underlying assumption
of the above methods is that features of all camera views have
the same properties, while for person re-identification images
captured from different camera views could differ notably.
Therefore, the unitary projection matrix shared by all views
learned by these methods would probably discard the use of
divergent features. Recently, sparse reconstruction based clas-
sification of face is extended to person re-identification [30],
[31]. However, the reconstruction has a underlying assumption
that images of the same person should distribute similarly at
different camera views, which is not the fact as shown in this
work.

Domain adaptation [32]–[34] which can reduce the gap
between different distributions seems an alternative solution
to cross-view matching. However, those methods cannot be an
optimal way to diminish the gap between the two camera views
in person re-identification, since they assume the existence
of overlapping between training and gallery/testing classes,
so that the classifier/metric learned from the training set can
be adapted to the gallery/testing one, while for person re-
identification there is no overlapping between the training and
gallery/testing classes. Note that our work is also different
from cross-dataset transferring [35]–[37] since we do not
incorporate any source dataset.

There are related works [39]–[44] in person re-identification
that can also learn view-specific mappings. An et al. [39],
[40] generated a new representation by projecting all samples
to the Regularized CCA (rCCA) subspace and constructing
the reference descriptors with the reference set. An et al.
also proposed robust CCA (ROCCA) [41] to better estimate
the data covariance matrices. rCCA and ROCCA are multi-
modal learning methods that project heterogeneous features
to a common space and thus they are related to our model.
However, the person re-identification we discuss in this work
is not a multi-modal learning problem and there are important
differences between our method and rCCA or ROCCA. Firstly,
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(a) RGB (b) HSV (c) YCbCr

Fig. 3. An example of feature discrepancy of RGB, HSV and YCbCr features. The first and the second rows are the distributions of 1

n
a,b
p

∑
i x

a
i and

1

n
a,b
p

∑
j x

b
j respectively. The x-axis is the index of bucket and the y-axis is the probability. The third row is the distribution of δ′. The fourth and fifth rows

are view-specific mappings of view a and view b trained by our method (will be presented in section III-B). The sixth row is the unitary mapping trained by
LFDA [9]. The x-axis corresponds to the buckets in the histogram and the y-axis is the weight of each bucket. The yellow bars indicate those features with
large δ′. As shown, the unitary mapping learned by LFDA tends to suppress the weight of the highly divergent features, while our method can utilize those
features. This experiment was conducted on PRID450S [38]. Best viewed in color.

rCCA and ROCCA do not control the discrepancy between
view-specific feature transformations. Although the feature
transformation is specific to each camera view, there should
be relation between them, because samples captured from
different views are not heterogeneous but related, either from
the same identity or from people with similar appearance. As
shown in our experiment, this is one of the key factors that
makes our model work much better than rCCA. Secondly,
rCCA and ROCCA do not consider intra-view modeling which
is also useful in our problem. In comparison, our method
includes cross-view consistency regularization and intra-view
modeling. Besides, we introduce local weighting to the feature
transformation processing so as to reduce the impact of
extremely different positive sample pairs. Hence our model
is more suitable for person re-identification. Liu et al. [42]
proposed to learn individual local feature projection for each
image sample, which intends to alleviate the influence of
configuration variations. In addition, Li et al. [43] proposed
to use a gating network to partition the image space of the
two camera views into subregions, and some local experts are
trained to align the features in the subregions. Some other
multi-modality methods like Cross-Modal Metric Learning
(CMML) [45] are related to our approach since they also learn
view-specific mappings. However, like rCCA and ROCCA,
these methods discussed above do not control the discrepancy
of inter-view projections or do not incorporate intra-view
modeling, which may not be optimal when applying to person

re-identification.

III. APPROACH

A. Feature Discrepancy of Different Camera Views

Let us consider a general case that there are N (N ≥ 2)
cameras with significant feature discrepancy. Let Xk =
[xk1 ,x

k
2 , . . . ,x

k
nk ] ∈ Rd×nk

denote the feature matrices ex-
tracted from the pedestrian images captured by the k-th view,
where d is the feature dimension and nk is the number of
samples of the k-th view. The average intra-class variation δ
and its lower bound δ′ of two specific views (view a and view
b) are given by:

δ = 1

na,b
p

∑
i,j∈Ça,b

|xai − xbj |

≥ 1

na,b
p

∑
i,j∈Ça,b

(xai − xbj) = δ′,
(3)

where Ça,b is the set of all positive pairs in view a and view
b, and na,bp is the cardinality of Ça,b.

Let us consider a single-shot situation, i.e., each pedestrian
has only one image for each view with na = nb. Then δ′ can
be rewritten as:

δ′ =
1

na,bp

na∑
i=1

xai −
1

na,bp

nb∑
j=1

xbj . (4)
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Assume that Xa and Xb are histogram features. We draw
1

na,b
p

∑
i x

a
i , 1

na,b
p

∑
j x

b
j and δ′ in row 1 and row 2 of Fig. 3.

We observe that 1

na,b
p

∑
i x

a
i and 1

na,b
p

∑
j x

b
j are not identical,

i.e., some features are highly divergent. Those highly different
features (the red bars) will generate a high δ′. Note that if Xa

and Xb are drawn from identical distribution, 1

na,b
p

∑
i x

a
i and

1

na,b
p

∑
j x

b
j shall be similar. Therefore, we believe that such

highly different features between the two views are caused
by the unmatched distributions, which will lead to the feature
discrepancy problem.

Most supervised subspace/metric learning methods try to
reduce the intra-class variation and the lower bound δ′ will
also be reduced. If a method learns an identical projection
or distance matrix for all views, the weights of the divergent
features tend to be reduced since those features will cause
high intra-class variation. As shown in row 6 of Fig. 3,
taking LFDA [9] for example, it learns unitary projection
for both views, and thus the weights for highly divergent
features are relatively small. However, those features could
contain some discriminative information, and deemphasizing
them may result in a performance drop. Since using an unitary
mapping for all views is not optimal to extract discriminative
features, we propose to learn camera-view specific mappings.
The camera-view specific mappings are learned so as to
transform those features to a common space. As shown in
row 3 and row 4 of Fig. 3, by using view-specific mappings,
the weights on highly divergent features do not have to be
suppressed and more features can be used. By learning view
specific transforms, we ultimately formulate an asymmetric
distance model called CVDCA for matching person images
across disjoint camera views.

To provide a further analysis of the discrimination power of
symmetric and asymmetric distance, we quantify the power
by computing the quotient between the average inter-class
distance and the average intra-class distance based on the
features generated by CVDCA and LFDA. The quotient is
defined as follows:

Q =

∑
i,j∈Ç

a,b

||yai − ybj ||2∑
i,j∈Ça,b

||yai − ybj ||2
, (5)

where yai and ybj are the projected features, Ç
a,b

is the set of
all negative pairs in view a and view b and Ça,b is the set of
all positive pairs. Here Q represents the quotient. A larger Q
indicates the features can be separated better and thus they are
more discriminative. Note that the values of Q of the features
extracted by CVDCA are 1.47, 2.27 and 1.37 for RGB,
HSV, YCbCr respectively, while those extracted by LFDA
are 1.10, 1.07 and 1.15 respectively. Therefore, we claim that
by using view-specific mappings, more discriminative features
are retained. Also, as shown in our experiments, the proposed
method does not dismiss the use of these features and achieves
a much better performance than LFDA.

B. Discrepancy Reduction by View-specific Transformations

The asymmetric distance model based person re-
identification is formulated by learning feature transformations
for each camera view. Let Up = [up1,u

p
2, . . . ,u

p
C ] denote the

projection matrices for view p, where p = 1, 2, · · · , N and C
is the dimension of the projected space. We aim at learning Up

that embeds the features Xp into a discriminative common
Euclidean space, where the relevant pairs are expected to be
with small Euclidean distance and the irrelevant pairs are
with large ones.

It is expected that the learned latent common space could
model the relations of both cross-view sample pairs and intra-
view sample pairs. Hence our model consists of both cross-
view modeling and intra-view modeling:

f = fcross + ηfintra, (6)

where the cross-view modeling fcross and the intra-view
modeling fintra can be formulated as Eq. (7) and Eq. (8), and
η is a positive value which controls the weight of intra-view
modeling.

fcross =

N−1∑
p=1

N∑
q=p+1

np∑
i=1

nq∑
j=1

W p,q
ij ||U

pTxpi −U
qTxqj ||

2
2, (7)

fintra =

N∑
p=1

np∑
i=1

np∑
j=1

W p,p
i,j ||U

pTxpi −U
pTxpj ||

2
2. (8)

In the above modeling, W p,q
ij is the weight on each pair of

samples between view p and view q, and Up is a projection
of view p. We define W p,q

ij as:

W p,q
ij =

{
1

np,q
pos
Ap,q
ij if (xpi , x

q
j) ∈ Çp,q

−γ 1
np,q
neg

otherwise
, (9)

where Ap,q
ij could set as a local weighting term like LFDA

[9] or simply set as 1, np,qpos and np,qneg are the numbers of
positive and negative pairs between view p and q respectively,
and γ is a scalar. Since the number of positive pairs is much
smaller than the number of negative pairs, we use 1

np,q
pos

and
1

np,q
neg

to normalize them, and thus the weight of intra-class
modeling and inter-class modeling can be easily modeled by
γ. In this way, minimizing the objective function f will reduce
the intra-class difference and meanwhile enlarge the inter-
class difference. When p 6= q, W p,q characterizes the cross-
view relationship; when p = q, it characterizes the intra-view
relationship.

In order to avoid trivial solution, namely Uk = 0 for k =
1, 2, . . . , N , we additionally incorporate some constraints and
formulate an optimization problem as:

min
U1,U2,...,UN

N−1∑
p=1

N∑
q=p+1

np∑
i=1

nq∑
j=1

W p,q
ij ||UpTxpi −U qTxqj ||22

+
N∑
p=1

np∑
i=1

np∑
j=1

W p,p
i,j ||UpTxpi −UpTxpj ||22

s.t. UkTMkUk = I, k = 1, 2, . . . , N,
(10)

where Mk = XkXkT + µI and I denotes the identity
matrix which avoids singularity of the covariance matrix.
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These constraints ensure the projected features of each view
have unit amplitude and thus they are not shrunken to zero.

C. Transformations Constrained by Cross-view Consistency
Regularization

Intuitively, if the feature distributions of two views are
similar, the learned feature transformations Up and U q are
also similar; otherwise, the learned Up and U q will be differ-
ent. Since features of corrupted positive pairs are arbitrarily
different, e.g. frontal view and dorsal view of a pedestrian
wearing a white t-shirt and a black backpack (see Fig. 2), it
could make the learned Up and U q quite different. These
largely different projection basis pairs do not capture the
natural property that images from different camera pairs are
correlated to an extent, and the performance would drop
dramatically when using these projection pairs.

To embed this correlation nature to our model, we propose
to penalize those largely different feature transformations.
Specifically, the difference of each projection basis pair can
be measured by the Bregman discrepancy [46], [47]. Given
a strictly convex function F : Rd×C → R, the Bregman
discrepancy of a projection pair is given by:

dF (U
p,U q) = F(Up)−F(U q)−∇F(U q)T (Up −U q),

(11)
where ∇F is the derivative of F . For any strictly convex F ,
dF (U

p,U q) ≥ 0.
The choice of F is non-trivial to the performance and

the computational complexity. If we set F(x) = xTx, the
Bregman discrepancy can be simplified to Euclidean distance
||Up−U q||2F . As will be shown later, such a regularization ter-
m results in an elegant solution and it works empirically well.
For all camera pairs,

∑N−1
p=1

∑N
q=p+1 ||Up −U q||2F is added

to the objective function Eq. (6). We call this regularization
the cross-view consistency regularization. In the Appendix, we
will explain how this regularization term is related to the prior
knowledge of the projection matrices.

Since
∑N−1
p=1

∑N
q=p+1 ||Up − U q||2F = (N −

1)tr(
∑N
k=1U

kTUk − 2
∑N−1
p=1

∑N
q=p+1U

pTU q), where
tr(·) denotes the trace operation, we formulate a regularized
version of Eq. (10) as:

min
U1,U2,...,UN

N−1∑
p=1

N∑
q=p+1

np∑
i=1

nq∑
j=1

W p,q
ij ||UpTxpi −U qTxqj ||22

+
N∑
p=1

np∑
i=1

np∑
j=1

W p,p
i,j ||UpxpTi −UpxpTj ||22

+tr(λ
N∑
k=1

UkTUk − 2λ′
N−1∑
p=1

N∑
q=p+1

UpTU q)

s.t. UkTMkUk = I; k = 1, 2, . . . , N,

(12)

where
λ = (N − 1)λ′. (13)

This cross-view consistency regularization is important to
exploit the intrinsic nature relations between view-specific fea-
ture transformations and help alleviate overfitting significantly
as evaluated in Sec. IV-D1. We call the above model as Cross-
View Discriminant Component Analysis (CVDCA).

D. Kernel Extension

The above method learns linear projection matrices for
feature transformation and may suffer from the nonlinearity of
given data. We further propose the kernel extension to alleviate
this problem.

The implicit high dimensional subspace bases of the k-th
view could be represented as X̃αk, where X̃ is the high
dimensional column-wise feature matrix of all training data.
Therefore, the projected data could be represented as:

hk(x̃k) = αkT X̃T x̃k = αkTk(X,xk), (14)

where k(X,x) = [k(X1,x), . . . , k(Xn,x)]
T . k(·, ·) is the

kernel function and hk(·) is the projection function of the k-
th view and n is the number of training samples.

By substituting Eq. (14) into Eq. (6), we find that the loss
function of KCVDCA is similar to the one of CVDCA by
replacing Up, U q , xpi and xqj with αp, αq , k(X,xpi ) and
k(X,xqj), respectively.

Using the reproducing property of the reproduced kernel
Hilbert space, 〈k(·,x), k(·,y)〉 = k(x,y), the regularization
terms in the implicit high dimension space can be repre-
sented as

∑N
k=1α

kTKαk and −
∑N−1
p=1

∑N
q=p+1α

pTKαq ,
where K is the gram matrices defined as K =
[k(X,X1),k(X,X2), . . . ,k(X,Xn)].

In summary, the optimization problem of KCVDCA is
described as below:

min
α1,α2,...,αN

N−1∑
p=1

N∑
q=p+1

np∑
i=1

nq∑
j=1

W p,q
ij ||α

pTk(X,xp
i )−α

qTk(X,xq
j)||

2
2

+
N∑

p=1

np∑
i=1

np∑
j=1

W p,p
i,j ||α

pTk(X,xp
i )−α

pTk(X,xp
j )||

2
2

+tr(λ
N∑

k=1

αkTKαk − 2λ′
N−1∑
p=1

N∑
q=p+1

αpTKαq)

s.t. αkTM ′kαk = 1; k = 1, 2, . . . , N,
(15)

where M ′k = KkKkT + λK and Kk =
[k(X,xk1),k(X,xk2), . . . ,k(X,xknk

)] .

E. A Closed-Form Solution

To show the solution of the objective function, we take the
linear case as an example and the kernel case is similar.

The objective function of optimization problem Eq. (12) can
be rewritten as:

f = tr(
N−1∑
p=1

N∑
q=p+1

UpTHp,qUp +U qTHq,pU q

−2UpTRp,qU q + λ
N∑
k=1

UkTUk),

(16)

where Hp,q = Xp(Dp,q + ηDp,p − ηW p,p)XpT , Dp,q is a
diagonal matrix whose diagonal entries are defined as Dp,q

ii =∑n
j=1W

p,q
ij and Rp,q =XpW p,qXqT + λ′I .

The objective function can be further simplified as:

f = tr(UTRU), (17)

where U is a row-wise concatenated matrix that consists of
projection bases of all N views and is defined as:

U = [U1;U2; · · · ;UN ] ∈ RNd×C , (18)
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and R is defined as:

R =


G1 −R1,2 · · · −R1,N

−R2,1 G2 · · · −R2,N

...
...

...
...

−RN,1 −RN,2 · · · GN

 , (19)

where Gk =
∑
q 6=kH

k,q + λI
Note that it is reasonable to relax the constraints

UkTMkUk = I, k = 1, 2, . . . , N to
∑N
k=1U

kTMkUk =
NI , since the relaxed version is sufficient to avoid trivial
solution. So the optimization problem can be modified as:

min
U

tr(UTRU)

s.t. UTMU = NI,
(20)

where M is a block diagonal matrix defined as M =
diag(M1,M2, . . . ,MN ).

The optimization problem Eq. (20) can be solved by com-
puting c eigenvectors corresponding to the smallest eigenval-
ues of the following generalized eigen-decomposition prob-
lem:

Ru = νMu, (21)

where ν is the Lagrange multiplier. After getting C eigenvec-
tors u1,u2, · · ·uC , the c-th transformation basis for the p-th
view is: upc =

δp(uc)
||δp(uc)||M where δp(·) means getting the p-th

sub-vector and ||v||M =
√
vTMv.

Since the solution of kernel extension Eq. (15) is quite
similar to the linear case Eq. (12), we do not present its
solution in detail. By replacing α with U , Mk with M ′k

(see Eq. (15)), Rp,q with KpDp,qKqT +λ′K and Hp,q with
Kp(Dp,q + ηDp,p − ηW p,p)KpT , the solution of the kernel
extension can be obtained by solving Eq. (21).

F. Properties of the Distance

In this section, we discuss the properties of the proposed
asymmetric distance in Eq. (2). Strictly speaking, our asym-
metric distance is not a conventional metric, and we prove that
it satisfies the non-negativity, symmetry and triangle inequality
properties, but not the coincidence property, and it is actually
a pseudometric.

1) Non-negativity: Since d is defined as the L2-norm of a
vector, it is naturally equal or larger than 0.

2) Symmetry: Since

d({xpi , p}, {x
q
j , q}) = ||UpTxpi −U qTxqj ||2

= ||U qTxqj −UpTxpi ||2
= d({xqj , q}, {x

p
i , p}),

(22)

the distance is symmetric. Note that the reason why we call
the distance asymmetric distance is that the projection bases
are different for different camera views.

3) Triangle Inequality: Note that

||A+B||2 ≤ ||B||2 + ||A||2, (23)

where A and B are vectors. By letting A = UpTxpi−U qTxqj ,
B = U rTxrk −UpTxpi , we obtain

||U rTxrk −U qTxqj ||2 ≤
||U rTxrk −UpTxpi ||2 + ||UpTxpi −U qTxqj ||2.

(24)

Thus we have

d({xrk, r}, {x
q
j , q}) ≤

d({xrk, r}, {x
p
i , p}) + d({xpi , p}, {x

q
j , q}).

(25)

4) Coincidence: It is noted that d({xp, p}, {xq, q}) = 0
holds if and only if UpTxp = U qTxq , which means
[Up;−U q]T [xp;xq] = 0, which could be an underdeter-
mined problem. Therefore there exists infinite number of
input {xp, p}, {xq, q} that satisfies d({xp, p}, {xq, q}) = 0.
That means d({xp, p}, {xq, q}) = 0 does not always im-
ply {xp, p} = {xq, q}. However, fortunately one still has
d({xp, p}, {xp, p}) = ||UpTxp − UpTxp||2 = 0. Therefore,
the coincidence property does not strictly holds, and our
distance is in fact a pseudometric. However, this does not
hurt the model for practical use. It is not practical for visual
surveillance to have the constraint that d({xp, p}, {xq, q}) = 0
only when {xp, p} = {xq, q}. In visual surveillance, it is
rare to have the same appearance representation for the same
person at different camera views due to the existence of view
changes, lighting changes, etc. Hence it is more practical
to say two images are from the same person if they are
having the same representation in the transformed space (i.e.,
UpTxp = U qTxq), while ensuring the optimization that two
images of different people have different representations in
that space.

IV. EXPERIMENTAL RESULTS

A. Datasets and Settings

1) Datasets: The evaluation of the proposed method is car-
ried out on six challenging datasets: PRID450S2 [38], VIPeR3

[48], CUHK014 [49], SYSU5 [1], CAVIAR4REID6 [50] and
RAiD7 [51]. Significant feature discrepancy can be observed in
all six datasets. PRID450S contains 450 image pairs recorded
from two different but static surveillance cameras. In this
set, masks generated both automatically and manually were
provided to define the foreground regions of interest. VIPeR
contains 632 pedestrian image pairs captured outdoor with
varying viewpoints and illumination conditions. Each image is
scaled to 128× 48 pixels. CUHK01 contains 971 pedestrians
from two disjoint camera views. Each pedestrian has two
samples per camera view. SYSU is a large and diverse dataset
that contains totally 48,892 images of 502 pedestrians captured
by two cameras in a campus environment. One of the camera
is positioned around a corner and thus illumination, pose and
viewpoint change dramatically. CAVIAR4REID contains 72
pedestrians of which 50 are viewed in disjoint camera views
and 22 are not. Totally 1220 images are included in the dataset.
RAiD contains 4 camera views with 2 indoor and 2 outdoor.
43 pedestrians are included in the dataset, resulting in 6920
images. Among the 43 pedestrians, 41 of them appeared in all
4 camera pairs. Illumination and pose change greatly across

2Available at https://lrs.icg.tugraz.at/download.php
3Available at https://vision.soe.ucsc.edu/node/178
4Available at http://www.ee.cuhk.edu.hk/∼xgwang/CUHK identification.

html
5Available at http://isee.sysu.edu.cn/resource
6Available at http://www.lorisbazzani.info/caviar4reid.html
7Available at http://www.ee.ucr.edu/∼amitrc/datasets.php
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the different camera views. Although there are other datasets
publically available, such as iLIDS [52] and ETHZ [53], we do
not conduct experiments on them because our method utilize
the camera view label information and those datasets do not
provide it.

2) Features: To validate the effectiveness of the proposed
method, we extracted only low-level color and texture features
in the following experiments. Specifically, we equally parti-
tioned each image into 18 non-overlapped horizontal stripes.
For each stripe, RGB, HSV, YCbCr, Lab and YIQ color
features as well as 16 Gabor texture features were extracted.
For each feature channel, a 16-bin histogram was extracted.
In order to balance the weight of each type of feature, we
normalized all histograms by L1-norm. All histograms were
concatenated together to form a single vector. Since PRID450S
provides automatically generated foreground masks, our fea-
tures were extracted from the foreground; for other datasets,
our features were extracted from the whole image.

The extracted feature contains rich information since it
was extracted from dense horizon stripe, including various
color space and texture features. However, it is sensitive to
illumination or viewpoint changes, so features of different
views could suffer great discrepancy.

3) Experimental protocol: All datasets were evaluated with
the same training protocol: each time half of the pedestrians
were selected randomly to form the training set, and the
remaining pedestrian images were used to form a testing
set. Since there are 22 pedestrians whose images were only
captured in a single view in CAVIAR4REID, we did not select
them for experiments and only used the rest 50 pedestrians for
evaluation. On RAiD, we followed the experimental protocol
in [24], i.e., we used camera pairs 1-3, 1-4 and 3-4 for
evaluation (denoted as RAiD(1-3), RAiD(1-4) and RAiD(3-
4)), and each pedestrian has 10 images for each view in the
multi-shot experiment. On SYSU, we randomly pick 3 images
of each pedestrian in each view for evaluation.

The performance was evaluated by both single-shot, i.e.,
only one image image each person was registered in the
gallery set, and multi-shot protocol, i.e., at least two images
each person were registered. For metric learning methods,
when comparing the distance between a probe person and a
gallery person in the gallery set, we calculate the average of
the learned distance between a probe image and each of the
registered image of that gallery person.

The performance was evaluated with both closed-set pro-
tocol and open-set protocol. The Cumulative Matching Char-
acteristic (CMC) curve was used for evaluating the closed-set
performance. A rank k matching rate in CMC curve indicates
the percentage of the probe image with correct matches found
in the top k rank against the p gallery images. In practice, a
high rank-1 matching rate is critical and the top k matching
rank matching rate with a small k value is also important since
the top matching images can be verified by human [8].

To simulate the open-set situation, we also randomly dis-
carded 20% of the gallery images, and thus some of the people
in the probe set is not known from the gallery set. In order to
quantify how well a true target have been verified and how bad
a false target have mistakenly passed through the verification,

we followed [35] to use the true target rate (TTR) and false
target rate (FTR) to evaluate the performance. TTR and FTR
are defined as:

TTR =
nTT
nT

,

FTR =
nNT
nN

,
(26)

where nT indicates the number of query target images from
target people, nTT indicates the number of query images
that are verified as one of the target people, nNT indicates
the number of non-target images from non-target people, and
nNT indicates the number of query non-target images that are
verified as one of the target people.

4) Methods for comparison: We first compared our meth-
ods with symmetric distance learning methods including LF-
DA [9], KLFDA [28], KISSME [17], regularized kernel PCCA
(rKPCCA) [28] and RDC [8]. We also evaluated the regu-
larized canonical correlation analysis (rCCA) [54] and cross-
modal metric learning (CMML) [45] which provide view-
specific mappings. In our comparison, all methods used the
same features and thus the performance difference is only due
to the different processing on the extracted features.

We also discuss the comparison of our methods with the
state-of-the-art methods in section IV-C, which is on the
system-level comparison in order to compare to the state-of-
the-art.

5) Parameter: In the following experiments, we set both
η and γ to 0.1 for both CVDCA and KCVDCA. In order
to balance the scale of the objective function and the feature
consistency regularization term, λ′ was set as 10−3 for CVD-
CA and 0.3 for KCVDCA. All parameters were fixed for all
datasets, and we will discuss those parameters in Section IV-D.

For the kernel methods, the chi-square kernel is used in our
experiments.

B. Comparison to the distance/subspace learning methods

1) Closed-set Evaluation: We first discuss the closed-set
situation where people in the probe set are represented in the
gallery set, which is a conventional person re-identification
test. Fig. 4 shows the CMC curves on VIPeR, PRID450S,
CUHK01, SYSU, CAVIAR4REID and RAiD respectively, and
Table I shows the top ranked matching rate on these datasets.

(K)CVDCA vs Baseline: We first compared our methods with
the L1 baseline. Table I shows that L1 does not perform well
in all the six datasets. Note that the features we used consist
of low-level color and texture features, which are sensitive
to the environment changes across views. Since L1 is a non-
learning distance measure, it is not robust to those changes.
Our methods learn asymmetric distance for better measuring
the distance of pedestrian images across camera views, and
thus they achieve significant improvement.

(K)CVDCA vs Symmetric Distance Learning: Symmet-
ric distance learning methods including (K)LFDA, rKPCCA,
KISSME, LMNN and RDC, are most relevant to our methods.
The major difference is that symmetric distance learning meth-
ods map the original features to a new space with a unitary
mapping, while our methods allow different mappings for
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TABLE I
TOP RANKED MATCHING RATE (%) ON VIPER, PRID450S, CUHK01, SYSU, CAVIAR4REID, RAID(1-3), RAID(1-4) AND RAID(3-4).

dataset VIPeR PRID450S CUHK01 SYSU
rank 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

KCVDCA 43.29 72.66 83.51 92.18 57.60 82.67 89.24 93.20 47.80 74.16 83.44 89.92 40.84 71.35 82.19 90.56
CVDCA 39.72 68.58 80.89 89.78 49.47 74.36 83.96 90.62 34.14 60.95 71.52 81.05 34.98 63.43 75.58 86.10

KLFDA [28] 34.27 65.82 79.94 90.92 52.84 79.51 87.20 92.80 26.62 50.63 62.28 73.50 28.69 58.21 70.96 82.39
LFDA [9] 27.03 60.28 73.99 85.70 42.09 70.93 80.18 88.18 15.22 35.80 47.37 59.52 26.22 55.62 68.80 80.32

rKPCCA [6] 22.28 55.47 72.41 86.04 31.82 62.40 76.00 85.73 16.68 41.00 54.11 67.73 22.31 52.99 68.13 83.67
KISSME [17] 24.21 53.10 68.99 82.97 38.49 67.20 78.09 86.89 13.53 31.99 42.89 55.56 16.85 39.84 54.66 68.96

RDC [8] 17.75 42.34 55.73 71.77 36.89 64.00 73.78 83.56 6.56 17.68 26.69 39.16 7.21 21.16 30.68 44.46
CMML [45] 18.77 51.17 66.77 82.31 28.27 58.71 72.40 85.60 11.45 29.72 40.98 56.03 10.36 28.29 44.62 64.14
rCCA [54] 22.94 51.23 67.44 82.09 25.24 52.31 66.13 78.62 14.90 32.59 43.77 55.53 14.58 34.14 46.37 59.96

L1 12.15 26.01 32.82 42.47 11.64 27.73 37.16 46.76 4.45 12.97 19.80 29.94 1.00 3.67 7.13 12.91
dataset CAVIAR4REID RAiD(1-3) RAiD(1-4) RAiD(3-4)

rank 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20
KCVDCA 47.20 85.60 95.20 98.40 61.64 91.69 98.50 100.00 76.69 99.50 99.50 100.00 81.63 98.45 100.00 100.00
CVDCA 31.20 69.20 86.80 98.00 48.50 86.33 96.57 100.00 60.36 95.12 99.00 100.00 75.05 97.45 99.47 100.00

KLFDA [28] 38.80 85.60 94.40 99.20 29.02 70.36 87.83 100.00 38.21 79.21 94.64 100.00 79.58 96.45 99.00 100.00
LFDA [9] 30.00 67.60 85.20 98.40 25.40 62.57 86.29 99.02 31.38 69.62 86.81 100.00 81.37 98.00 99.50 100.00

rKPCCA [6] 30.77 73.08 80.77 100.00 40.57 79.00 94.62 99.02 61.24 94.07 99.52 100.00 72.37 98.00 100.00 100.00
KISSME [17] 30.77 70.00 90.38 100.00 39.02 76.60 93.71 100.00 63.33 95.64 100.00 100.00 79.29 97.50 99.50 100.00

RDC [8] 8.00 30.40 53.76 84.64 5.00 21.00 47.00 100.00 9.52 38.10 58.10 96.83 55.00 87.00 95.00 100.00
CMML [45] 8.00 27.00 43.55 82.74 10.00 25.00 55.00 96.67 4.76 24.76 49.52 95.24 5.00 27.00 60.00 100.00
rCCA [54] 27.20 68.00 85.60 98.00 40.76 77.62 93.60 100.00 42.50 84.00 96.14 100.00 44.95 91.34 97.97 100.00

L1 17.31 43.85 66.15 86.92 6.76 27.07 56.71 95.62 8.21 37.21 60.33 98.05 48.05 85.76 89.84 100.00

(a) VIPeR (b) PRID450S (c) CUHK01 (d) SYSU

(e) CAVIAR4REID (f) RAiD(1-3) (g) RAiD(1-4) (h) RAiD(3-4)

Fig. 4. CMC curves on VIPeR, PRID450S, CUHK01, SYSU, CAVIAR4REID and RAiD(1-3), RAiD(1-4) and RAiD(3-4). Best viewed in color.

different camera views. As such, symmetric distance learning
assumes the features used for distance measurements can
be both discriminative and invariant to environment changes,
while asymmetric distance learning do not hold such a restrict-
ed assumption. Hence our methods weaken the assumption of
distance learning previously used in person re-identification,
and achieve notable improvement as compared to symmetric
distance learning methods. Among those symmetric distance
learning methods, KLFDA/LFDA achieves relatively good
performance. KCVDCA achieves 9.02%, 4.76%, 21.18%,
12.15%, 9.00%, 32.64%, 38.48% and 2.05% improvement
over KLFDA at rank 1 on VIPeR, PRID450S, CUHK01,
SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4) and RAiD(3-

4), and for linear case, the difference of rank-1 between
CVDCA and LFDA is 12.69%, 7.38%, 18.94%, 8.76%, 1.20%,
23.10%, 28.98% and -6.32% on those datasets respectively.
The improvement is particularly notable on SYSU, CUHK01,
RAiD(1-3) and RAiD(1-4). The illumination changes of these
datasets are extremely large (see Fig. 2(a),(f) and (g)), and
the feature difference of two images is caused more by the
lighting change than that by the pedestrian identities. Since
our methods learn asymmetric distance, i.e., view-specific
mapping is used for each view, the influence of lighting
change is suppressed and the distance model for matching
is more relevant to pedestrian identities. A latter evaluation
in Sec. IV-D1 further shows that the performance of our
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methods would drop notably when they degrade to symmetric
distance models. Also note that in RAiD(3-4), KCVDCA
performs only slightly better than KLFDA. It is because in
RAiD dataset, camera 3 and 4 are both outdoor cameras,
and the environmental condition such as illumination does not
change much (see Fig. 2(h)). Thus our methods does not show
significant advantage in this setting. For indoor-outdoor setting
like RAiD(1-3) and RAiD(1-4), our methods performs much
better.

(K)CVDCA vs Multi-Modal Learning: Multi-modal learning
methods including CMML and rCCA were also evaluated
in our experiments. They are related to our model since
they and ours all can learn view-specific feature transforma-
tions. However, those methods deal with the problem when
features of different views are heterogeneous, while for the
person re-identification problem we discuss in this work the
features of person images under different camera views are
not heterogeneous but related. Nevertheless, these methods
do not perform well on person re-identification. In contrast,
our methods model the relation between view-specific feature
transformations with the feature consistency regularization and
thus perform much better.

2) Open-Set Evaluation: In addition to the closed-set per-
formance evaluation, we also report the open-set performance
as Fig. 5. Note that in the open-set setting, some identities
in the probe set are not known in the gallery set, and our
objective is to verify whether a query image comes from
the people in the gallery set. The TTR versus FTR curve
defined by Eq. (26) was used for evaluation. Clearly, our
method also achieves the best performance among all methods
in comparison. Specifically, when FTR=10%, the TTR of
KCVDCA are 96.21%, 96.33%, 93.93%, 89.05%, 44.52%,
75.32%, 90.55%, and 86.93% on VIPeR, PRID450S, CUHK,
SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4) and RAiD(3-
4) respectively, while for KLFDA they are 90.99%, 89.67%,
80.21%, 73.38%, 31.83%, 38.88%, 47.75% and 85.84% re-
spectively.

C. Comparison to the State-of-the-Art

The proposed method is compared with the state-of-the-art
methods using the same evaluation protocols. Table. II-VII
show the top matching rate on VIPeR, PRID450S, CUHK01,
RAiD and CAVIAR4REID datasets, and Fig. 6 shows the
CMC curves. Note that SYSU is a newly released dataset and
to the best our our knowledge, there is no supervised method
conducted on this dataset and therefore it is not used in this
section.

On VIPeR, MLF+LADF [2] combines the result of MLF
and LADF. For fair comparison, we trained the proposed
KCVDCA method using both our low-level features and high-
level texture features [55] used by LADF [18], and then
simply summed up the score as MLF+LADF [2] did. Fig. 6(a)
shows that our method achieves the best performance on this
dataset. We have compared our algorithm with the SCNCD
[4], KISSME [17], EIML [19], LMNN [5], LMNN-R [20]
and ITML [7] on PRID450S, and compared our algorithm with
MLF [2], Ref-Reid [39], ITML [7], LMNN [5], SalMatch [22]

TABLE III
TOP RANKED MATCHING RATE (%) ON CAVIAR4REID (N = 5).

rank 1 5 10 20
KCVDCA 36.80 78.80 92.40 99.20
FW [24] 33.20 78.50 94.10 100.00

LFDA [9] 36.19 66.15 88.56 98.41
ISR [30] 14.40 47.60 69.60 94.40

TABLE IV
TOP RANKED MATCHING RATE (%) ON CAVIAR4REID (N = 10).

rank 1 5 10 20
KCVDCA 45.60 86.00 95.60 99.60
FW [24] 41.90 86.50 96.70 100.00
ICT [58] 26.80 70.40 90.00 99.60
ISR [30] 18.40 50.00 71.20 95.60

and eSDC [3] on CUHK01. Fig. 6(b) and Fig. 6(c) show that
our approach outperforms other approaches by a large margin.

On RAiD dataset, we have compared our algorithm with the
recently proposed NCR [51], FW [24], WACN [56], LFDA [9],
SDALF [57], ICT [58] and ISR [30]. Fig. 6(d)-6(f) and Tab.
II show that our method could achieve the state-of-the-art on
all the three camera pairs.

On CAVIAR4REID, our approach achieves overall better
results. In particular, FW [24] is comparative to our approach
as observed from Fig. 6(g) and Fig. 6(h). On the comparison
with ISR [30], the proposed method achieves clearly better
results. Note that the testing protocol used by ISR in [30]
is different from ours, i.e., the gallery and probe images are
strictly from different camera views in our setting. The exper-
iment shows that ISR does not perform well when matching
person images from disjoint/different camera views probably
because the gallery images may not be able to reconstruct the
probe one very well.

TABLE V
TOP RANKED MATCHING RATE (%) ON VIPER COMPARED TO THE

STATE-OF-THE-ART.

rank 1 5 10 20
KCVDCA(Fusion) 47.78 76.33 86.33 94.02

MLF+LADF [2] 43.39 73.04 84.87 93.70
MLF [2] 29.11 52.34 65.95 79.87

Ref-Reid [40] 33.29 63.54 78.35 88.48
SalMatch [22] 30.16 52.31 65.54 79.15

LADF [18] 29.34 61.04 75.98 88.10
LFDA [9] 24.18 52.00 67.12 82.00
RDC [8] 15.66 38.42 53.86 70.09

D. Discussion

1) Effectiveness of Cross-View consistency regularization:
As discussed in III-C, the cross-view consistency regulariza-
tion is critical to avoid learning arbitrarily different projections
for different views. Fig. 7(a) shows the effectiveness of this
regularization on PRID450S for example and similar conclu-
sion can be drawn on the others. Note that if the penalty
term λ′ is infinitely small, the effect of this regularization
vanishes and the rank-1 matching rate is less than 10%; as λ′
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(a) VIPeR (b) PRID450S (c) CUHK01 (d) SYSU

(e) CAVIAR4REID (f) RAiD(1-3) (g) RAiD(1-4) (h) RAiD(3-4)

Fig. 5. TTR-FTR curves on VIPeR, PRID450S, CUHK01, SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4) and RAiD(3-4). Better viewed in color.

TABLE II
TOP RANKED MATCHING RATE (%) ON RAID(1-3), RAID(1-4) AND RAID(3-4).

camera pair pair 1-3 pair 1-4 pair 3-4
rank 1 5 10 20 1 5 10 20 1 5 10 20

KCVDCA 61.64 91.69 98.50 100.00 76.69 99.50 99.50 100.00 81.63 98.45 100.00 100.00
NCR on FT [51] 67.00 83.00 93.00 100.00 68.00 86.00 99.00 100.00 79.00 93.00 98.00 100.00

FW [24] 46.17 82.86 94.76 99.25 53.81 90.00 98.10 100.00 55.67 90.87 99.12 100.00
WACN [56] 14.89 55.46 78.89 99.28 22.40 64.07 89.48 99.88 38.07 75.62 93.07 99.50
SDALF [57] 12.19 44.99 73.95 99.07 16.99 57.22 83.17 99.60 33.99 72.36 90.07 99.77

ICT [58] 29.52 70.95 91.43 99.05 37.14 79.52 96.19 100.00 40.95 84.76 96.67 100.00
ISR [30] 5.88 24.83 51.71 97.62 8.81 32.40 51.55 98.57 58.79 86.92 92.45 95.25

(a) VIPeR (b) PRID450S (c) CUHK01 (d) RAiD (1-3)

(e) RAiD (1-4) (f) RAiD (3-4) (g) CAVIAR4REID N=5 (h) CAVIAR4REID N=10

Fig. 6. Comparison to the state-of-the-art on VIPeR, PRID450S CUHK01, CAVIAR4REID and RAiD. Specifically, Fig 6(d)-6(f) refer to the experiments
conducted on camera pairs 1-3, 1-4 and 3-4 of RAiD respectively. Fig. 6(g) and Fig. 6(h) are multi-shot experiments conducted on CAVIAR4REID with 5
and 10 images per pedestrian respectively. Best viewed in color.

increases, the rank-1 matching rate increases simultaneously
until it reaches the maximum which is larger than 50%. If

the penalty term is set too large, it then tends to ignore the
feature discrepancy across views and thus the performance
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TABLE VI
TOP RANKED MATCHING RATE (%) ON PRID450S COMPARED TO THE

STATE-OF-THE-ART.

rank 1 5 10 20
KCVDCA 57.60 82.67 89.24 93.20

SCNCD(ImgF) [4] 42.44 69.22 79.56 88.44
KISSME [17] 33.47 59.82 70.84 79.47

EIML [19] 34.71 57.73 67.91 77.33
LMNN [5] 28.98 55.29 67.64 78.36

LMNN-R [20] 21.96 46.22 58.53 71.20
ITML [7] 24.27 47.82 58.67 70.89

TABLE VII
TOP RANKED MATCHING RATE (%) ON CUHK01 COMPARED TO THE

STATE-OF-THE-ART.

rank 1 5 10 20
KCVDCA 47.80 74.16 83.44 89.92
MLF [2] 34.30 55.06 64.96 74.94

Ref-Reid [40] 31.10 57.10 68.55 79.18
ITML [7] 15.98 35.22 45.60 59.81

LMNN [5] 13.45 31.33 42.25 54.11
SalMatch [22] 28.45 45.85 55.67 67.95

eSDC(KNN) [3] 19.67 32.72 40.29 50.58

(a) λ′ (b) η

Fig. 7. Parameter analysis of CVDCA. (a) shows the parameter of cross-view
consistency regularization; (b) shows the parameter of intra-view modeling.

drops. Note that when this penalty term is infinitely large, the
view-specific mappings would be the same and asymmetric
distance learning degrades to symmetric distance learning.
Hence, the experimental results validate our analysis that a
proper cross-view consistency regularization is critical for
asymmetric distance learning.

2) Effectiveness of Intra-View Modeling: Our model Eq.
(12) consists of both cross-view and intra-view modeling.
We argue that the cross-view modeling plays a major role
for the person re-identification problem and the intra-view
modeling may have relative limited effectiveness to the cross-
view matching problem. Fig. 7(b) shows the weight of intra-
view modeling η versus the rank-1 matching rate on CUHK01
dataset and similar conclusion can be drawn on the others.
Note that when η = 0, the intra-view modeling part is
removed and only the cross-view modeling contributes to the
performance, and the rank-1 matching rate is 33.8%. Tuning η
does boost the performance and the maximum rank-1 matching
rate is 34.6%, which indicates that the intra-view modeling is
useful, albeit limited.

Note that the widely used testing protocol for person re-
identification is to match pedestrians across camera views,

Fig. 8. Performance using different types of features.

Fig. 9. Illustration of Gabor features of PRID450S. Similar with Fig. 3, the
first row is the Gabor feature distributions of 1

n
a,b
p

∑
i x

a
i and the second

row is that of 1

n
a,b
p

∑
j x

b
j .

while the intra-view matching is not the concern. Hence it is
reasonable that the cross-view modeling plays more important
part in the modeling. The intra-view modeling, to an extent, is
related to the matching, and thus incorporating it to the model
could help tackling the cross-view matching problem.

3) A Brief Analysis of the Extracted Features: Throughout
the experiment section, we have shown that our asymmetric
distance performs better than the symmetric ones. Our expla-
nation is that by using different mappings for different camera
views, we can extract more discriminative features, even if
those features are divergent for each view. On the contrary,
using an unitary mapping for all views would have to discard
some of the discriminative features if they are divergent.

Taking PRID450S as an example, we give an analysis on
the difference of features extracted by asymmetric distance
learning method (CVDCA) and symmetric distance learning
method (LFDA). We semantically divided the features into
color features (including RGB, HSV, YCbCr, Lab and YIQ
features) and texture features (the Gabor features). As shown
in Fig. 8, color features are more discriminative than texture
features, as using color features results in better performance
than using texture features. However, as shown in Fig. 3, color
features on this dataset are very different across the two camera
views, while in Fig. 9 we can see that texture features are much
more consistent across the two views.

We trained CVDCA and LFDA with the color+texture
features and obtained the projection bases Ua and U b (for
LFDA, Ua = U b). Then we calculated the energy for each
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Fig. 10. Energy distribution of different types of features. Energy is defined
as Eq. (27). We compare the percentage of energy of different feature types
between CVDCA and LFDA.

type of features as follows:

E(f) =
∑
k

∑
j∈Bf

(Ua(k, j)2 +U b(k, j)2), (27)

where f ∈ {RGB,HSV, Y CbCr, Lab, Y IQ,Gabor} indi-
cates the set of feature types, Bf is the set of indices of feature
type f , and Ua(k, j) is the k-th column and j-th row of matrix
Ua. Fig. 10 shows the energy distribution of different feature
types of CVDCA and LFDA. It shows that CVDCA allots
more energy to the color features, while LFDA allots more
to the texture features. Recall that color features are more
discriminative but divergent, while texture features are less
discriminative but more divergent. Therefore, we conclude that
more color features, which is shown to be more discriminative,
are preserved by our approach.

V. CONCLUSION

In this paper, we address the feature discrepancy prob-
lem across non-overlapping camera views for person re-
identification. A cross-view discriminant component analysis
method which forms an asymmetric distance model for match-
ing person images between disjoint camera views by learning
view-specific mappings is proposed to overcome this problem.
To model the correlation nature of feature transformations
of different views, a cross-view consistency regularization is
introduced in our model. Experimental results demonstrate that
1) asymmetric distance model performs notably better than
symmetric ones; 2) the influence of feature discrepancy can
be effectively alleviated by view specific modeling.

In this work, we use Euclidean distance as the measure
of the discrepancy of different mappings in the cross-view
consistency regularization, which implicitly assumes Gaussian
distribution for the projection matrices. However, how to relax
such an assumption remains a future issue to investigate. In
our future works, we would like to investigate other examples
of the Bregman distance, which could work better for more
general distributions in the exponential families.
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