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Abstract—In this supplementary document, we provide a more detailed
proof of the convergence of our optimization algorithm for the proposed
joint heterogeneous features learning (JOULE) model in our main sub-
mission, which is excluded from the main submission due to space
limitation.

1 OPTIMIZATION OF JOULE

In our main submission, we propose a joint learning model to
explore the shared and feature-specific structures for RGB-D
activity recognition as an instance of heterogeneous multi-task
learning. Specially, our JOULE model is given by

min
W0,{Wi}
{Θi}

∑
i=1,...,S

(‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F

− γ‖ΘT
i Xi‖2F ) + α‖W0‖2F + β

∑
i=1,...,S

‖Wi‖2F

s.t. ΘT
i Θi = I, i = 1, 2, ...S

(1)
As mentioned in the main submission, we develop an efficient

optimization algorithm for the proposed model (1) by iterating the
following three steps.
STEP 1. Minimizing the objective function with respect to W0

for fixed coefficients Wi and Θi:

min
W0

S∑
i=1

‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F + α‖W0‖2F

(2)
STEP 2. Minimizing the function with respect to Wi for fixed
the coefficients W0 and Θi:

min
{Wi}

S∑
i=1

‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F + β‖Wi‖2F

(3)
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We turn to optimizing the following S subproblems
min
Wi

‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F + β‖Wi‖2F (4)

STEP 3. Finally, optimizing Θi for fixed W0,Wi:

min
Θi

S∑
i=1

(‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F − γ‖ΘT
i Xi‖2F )

s.t. ΘT
i Θi = I, i = 1, 2, ...S

(5)
Equivalently, we can solve the following S subproblems

min
Θi

‖(λW0 + (1− λ)Wi)
TΘT

i Xi −Yi‖2F − γ‖ΘT
i Xi‖2F

s.t. ΘT
i Θi = I

(6)
Each subproblem can be solved by a gradient based updating
scheme Θi(t + 1) = (I + τ

2∇)−1(I − τ
2∇)Θi(t), where

∇ is defined by the gradient of the objective function G as
∇ = GΘi(t)

T − Θi(t)G
T . The gradient G is given by

G = Xi((λW0 + (1 − λ)Wi)
TΘi(t)

TXi − Yi)
T (λW0 +

(1− λ)Wi)
T − 2γXiX

T
i Θi(t).

2 CONVERGENCE OF THE OPTIMIZATION

In the following, we will theoretically illustrate that our proposed
three-step iterative optimization algorithm is guaranteed to con-
verge to a locally optimal solution. To accomplish the proof,
we firstly prove that all of the three steps would monotonously
decrease the objective function value in Section 2.1, 2.2, and 2.3,
and then show that the objective function is lower bounded and
finally conclude its convergence in Section 2.4.

2.1 Optimization of STEP 1
Lemma 1. The solution of problem (2) is
given by W∗

0 = (
∑
i λ

2ΘT
i XiX

T
i Θi +

αI)−1
∑
i (ΘT

i Xi(Y
T
i − (1− λ)XT

i ΘiWi)).

Proof. Let J1(W0) =
∑S
i=1 ‖(λW0 + (1− λ)Wi)

TΘT
i Xi −Yi‖2F+

α‖W0‖2F . Here, we aim to find an optimal W0 that minimizes
J1(W0). The partial derivative of J1(W0) with respect to W0

is given by

∂J1
∂W0

= 2ΦW0 + 2λ
S∑
i=1

ΘT
i Xi((1− λ)XT

i ΘiWi −YT
i )

Φ = λ2
S∑
i=1

ΘT
i XiX

T
i Θi + αI
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By setting ∂J1
∂W0

to 0, we can obtain an analytic solution of the
problem (2) as

W∗
0 = λΦ−1

∑
i

ΘT
i Xi(Y

T
i − (1− λ)XT

i ΘiWi)

We also note that
∂2J1
∂W2

0

= 2(λ2
S∑
i=1

ΘT
i XiX

T
i Θi + αI) � 0

where � 0 indicates positive semi-definite. Hence, The objective
function in problem (2) is convex with respect to W0, and
replacing W0 with W∗

0 would obviously decrease the value of
our objective function.

2.2 Optimization of STEP 2

Lemma 2. The solution of the ith subproblem in Step 2 (i.e.
Formula 3) can be determined by W∗

i = (1 − λ)((1 −
λ)2ΘT

i XiX
T
i Θi + βI)−1ΘT

i Xi(Y
T
i − λXT

i ΘiW0).

Proof. We denote the objective function of the ith subproblem
(4) as J2i. Then the partial derivative of J2i with respect to Wi

is indicated by
∂J2i
∂Wi

= 2βiWi + 2(1− λ)ΘT
i Xi(∆Yi)

T

∆Yi = (λW0 + (1− λ)Wi)
TΘT

i Xi −Yi

By setting the derivative equal to zero, we can obtain the optimal
solution W ∗i .

Similar to that in STEP 1, we can easily derive the second
order derivative as

∂2J2i
∂W2

i

= 2((1− λ)2ΘT
i XiX

T
i Θi + βI) � 0

Therefore, problem (3) is convex. This lemma indicates that the
updating scheme in STEP 2 would decrease the value of our
objective function in (1).

2.3 Optimization of STEP 3

Finally, we prove that the optimization of STEP 3 continues
decreasing the objective function. Here we provide the proof based
on some tricks in [1], which provides a feasible optimization
technique with orthogonality constraints.

Theorem 1. Let J3 be the objective function of the ith subproblem
in (6). The problem (5) in STEP 3 would converge to a minimum
using the proposed updating scheme.

In order to prove the above theorem, we first need the follow-
ing two lemmas.

Lemma 3. 1) The orthogonality constraints would be preserved
in our updating scheme, i.e. Θi(t+1) satisfying the orthogonality
constraint, if Θi(t)

TΘi(t) = I.
2) Define U(τ) = (I + τ

2∇)−1(I − τ
2∇)Θi, then

∂J3(U(τ))
∂τ |τ=0 = − 1

2 ‖ ∇ ‖
2
F .

Proof. Part 1): Provided that ∇ is a skew-symmetric matrix, i.e.
∇T = −∇, we then have

Θi(t+ 1)TΘi(t+ 1)

=Θi(t)
T (I +

τ

2
∇)(I− τ

2
∇)−1(I +

τ

2
∇)−1(I− τ

2
∇)Θi(t)

=Θi(t)
T (I− τ

2
∇)−1(I− τ

2
∇)(I +

τ

2
∇)(I− τ

2
∇)−1

(I +
τ

2
∇)−1(I− τ

2
∇)Θi(t)

=Θi(t)
TΘi(t)

=I
For the derivation of the equations marked as underlined in the
above, we use the fact that

(I− τ

2
∇)(I +

τ

2
∇) = (I +

τ

2
∇)(I− τ

2
∇)

Part 2): We define U(τ) = (I+ τ
2∇)−1(I− τ

2∇)Θi. Indeed,
this is the newly updated point with a step size τ . Then we have

(I +
τ

2
∇)U(τ) = (I− τ

2
∇)Θi

By taking the derivative of the above equation with respect to
τ , we can obtain

(I +
τ

2
∇)

∂U(τ)

∂τ
+
∇
2

U(τ) = −1

2
∇Θi

By solving the above equation and setting τ = 0, we can obtain
∂U

∂τ
|τ=0 = −(I +

τ∇
2

)−1
∇
2

(Θi + U(τ))|τ=0 = −∇Θi (7)

Then
∂J3(U(τ))

∂τ
|τ=0 =tr(

∂J3(U)

∂U

T
∂U

∂τ
)|τ=0

=− tarce(GT∇Θi)

=− tr(GT (GΘT
i −ΘiG

T )Θi)

=− tr(GGT −GTΘiG
TΘT

i )

=− 1

2
tr(GΘT

i ΘiG
T + ΘiG

TGΘT
i

−GΘT
i GΘT

i −ΘiG
TΘiG

T )

=− 1

2
tr(GΘT

i −ΘiG
T )(GΘT

i −ΘiG
T )T

=− 1

2
tr(∇∇T )

=− 1

2
‖ ∇ ‖2F

In the aforementioned derivations, we use the fact that
tr(GGT ) = tr(ΘiG

TGΘT
i ) and tr(GΘT

i GΘT
i ) =

tr(ΘiG
TΘiG

T ) as the following equation, tr(AA′) =
tr(A′A), holds for any matrix A.

Lemma 4. With proper step size τ∗, updating Θi(t) with Θi(t+
1) = (I + τ∗

2 ∇)−1(I− τ∗

2 ∇)Θi(t) would decrease the value of
the objective function in the ith subproblem (6).

Proof. According to Lemma 3, we can select a proper τ∗ such
that ∂J3(Θi(t+1))

∂τ |τ∗ ≤ 0. Then the selected τ∗ would decrease
the objective function value.

Proof of Theorem 1. Now, it is straightforward to prove the the-
orem 1. For each step in our algorithm, according to Lemma 4 and
part 1 of Lemma 3, the proposed updating scheme would decrease
the objective function and simultaneously satisfy orthogonality
constraint in each iteration. Since the objective function has a
lower bound, the updating scheme of STEP 3 will converge to a
minimum.
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2.4 Convergence of the algorithm
As stated in section 2.1, 2.2, and 2.3, all the three steps would
decrease the objective function in our JOULE model (1). Note
that

−‖ΘT
i Xi‖2F = −‖Xi‖2F + ‖Xi −ΘiΘ

T
i Xi‖2F ≥ −‖Xi‖2F

Hence, the objective function in (1) is lower bounded when
α, β, γ ≥ 0

Therefore, the proposed optimization algorithm is guaranteed
to converge to a minimum.
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