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Early Action Prediction by Soft Regression
Jian-Fang Hu, Wei-Shi Zheng, Lianyang Ma, Gang Wang, Jianhuang Lai, and Jianguo Zhang

Abstract—We propose a novel approach for predicting on-going action with the assistance of a low-cost depth camera. Our approach
introduces a soft regression-based early prediction framework. In this framework, we estimate soft labels for the subsequences at
different progress levels, jointly learned with an action predictor. Our formulation of soft regression framework 1) overcomes a usual
assumption in existing early action prediction systems that the progress level of on-going sequence is given in the testing stage; and 2)
presents a theoretical framework to better resolve the ambiguity and uncertainty of subsequences at early performing stage. The
proposed soft regression framework is further enhanced in order to take the relationships among subsequences and the discrepancy
of soft labels over different classes into consideration, so that a Multiple Soft labels Recurrent Neural Network (MSRNN) is finally
developed. For real-time performance, we also introduce a new RGB-D feature called “local accumulative frame feature (LAFF)”, which
can be computed efficiently by constructing an integral feature map. Our experiments on three RGB-D benchmark datasets and an
unconstrained RGB action set demonstrate that the proposed regression-based early action prediction model outperforms existing
models significantly and also show that the early action prediction on RGB-D sequence is more accurate than that on RGB channel.

Index Terms—Early action prediction, RGB-D, soft regression
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1 INTRODUCTION

Recognizing actions before they are fully executed in real-
time is very important for some real-world applications like visual
surveillance, robot designing [26], [27], and clinical monitoring
[28]. Early action prediction is to predict the label of an on-
going action using the observed subsequences that only contain
partial action execution. While action recognition is a long-term
research topic with considerable progress on developing robust
spatiotemporal features (Cuboids [6], interest point clouds [1],
HOG3D [21], dense trajectory [53], and two-stream CNN [47],
[51], [56], [58] etc.) and feature learning techniques (sparse
coding [65], max-margin learning [12], [69], Fisher vector [53],
rank pooling [8] etc.), conventional action recognition aims at
developing algorithms and systems for after-of-the-fact prediction
of human action (i.e. when action sequence is entirely observed),
and thus these action recognition methods don’t seek to build
models for early action prediction at different progress levels,
which in particular requires modeling the intrinsic expressive
power of subsequences at different progress levels and processing
them in real-time.

While there exists work for early action prediction [2], [29],
[41], when applied in the deployment stage, most of them require
manually labeling the progress level of an on-going video segment
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that tell how much an action has finished. However, this makes
the system not applicable in practice, since the system will not
have a chance to access the progress level of an ongoing action
sequence until the action has been completely executed. Although,
instead of labeling progress level, an alternative way is to simply
label a subsequence1 as the class label of the full sequence [67],
sometimes, this naive labeling would make early action prediction
ambiguous. An action sequence consists of several segments,
and segments from different actions could be similar at its early
performing stage, so that partially observed sequence could often
be ambiguous in predicting the class label of the expected full
action sequence. Taking Figure (1) as an example, the subsequence
“taking out a cell-phone” appears in both the action sequences
“calling with a cell-phone” and “playing with a cell-phone”,
from which it is hardly to tell the difference between the two
actions. We argue that such an uncertainty and ambiguity should
be considered in the modeling stage. If, in those cases, these
were made certain by naively assigning hard labels (e.g.,simply
treating the subsequence of taking out phone in the first row as
“calling with phone” while defining the similar subsequence in
the second row as “playing with a cell-phone”.), it will not benefit
the predictor learning.

To address the above problems, we formulate a soft regression
based early action prediction framework. In this framework, we
learn a soft label for the subsequence at each progress level. The
learned soft label tells how likely the subsequence is performing
the action depicted in the corresponding full sequence, and the
learned soft label thus allows similar labeling for any two sub-
sequences at the same or similar progress level. The soft label
would be automatically updated as more parts of an action are
observed such that it tends to be the real action class label. In
order to enable soft label to work in such a way, we learn it jointly
with early action predictor in a soft regression framework, where
subsequences with partial action executions are also employed
for refining the predictor learning. By using our model, the usual

1. In this work, the subsequence of an action means the accumulation of
consecutive segments from the start of the action.
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Fig. 1. Snapshots from activities calling with a cell-phone (the first row) and playing with a cell-phone(the second row). As presented in the first
row, it is hard to recognize the action when its progress level is less than 2. However, if the segment with temporal interval [1, 2] (marked with red
box) are provided, it becomes clear that the subject is performing the action calling with a cell-phone. We also observe that the subsequences at
progress level 1 (temporal interval [0, 1]) in the two activities contain the same action “taking out a cell-phone”.

assumption in early action prediction on given the progress level
of subsequence in the testing stage [2], [23] is no longer necessary.

We further explore specifically the temporal relationship be-
tween successive frames of on-going subsequences by developing
a soft RNN-based framework, and thus a Soft-RNN regression
model is developed. Since subsequences at the same progress level
from different actions have different predictive powers for their
underlying actions, that means soft labels could be different for
different actions at the same progress level, we finally develop a
Multiple Soft labels Recurrent Neural Network (MSRNN).

Our early action prediction model works on RGB-D channels,
while existing ones are relying on using RGB videos by matching
visual appearance and human motion among the activities exe-
cuted at different progress levels [2], [28], [29], [41], [63]. How-
ever, RGB features are intrinsically limited in capturing highly
articulated motions due to the inherent visual ambiguity caused
by clothing similarity among people, appearance changes from
view point difference, illumination variation, cluttered background
and occlusions [13], [55]. The recently introduced low-cost depth
cameras can alleviate the ambiguity due to the availability of more
modal data for describing action such as depth of scene and 3D
joint positions of human skeleton. Hence, in this work, we further
explore real-time early action prediction with the assistance of
depth sensors.

In addition, towards making our prediction model work on
RGB-D sequence in real-time, we design local accumulative frame
feature (LAFF) to characterize the action context of RGB-D se-
quence with arbitrary action progress levels. The RGB-D context
will include the appearance, shapes and skeletons of human body
parts, manipulated objects and even scene (background). By em-
ploying the popularly used integral map computing technique, we
demonstrate that the formulated LAFF can be efficiently computed
in a recursive manner and thus suitable for real-time prediction. As
shown by the flowchart of our method in Figure 2, our proposed
method can process more than 34 frames per second on a normal
PC using MATLAB without code optimisation and the use of more
efficient programming languages, which can be made for real-time
early action prediction.

In summary, the main contributions of this work are multi-fold:
1) a soft regression (SR) framework is formulated for early action
prediction; 2) both conventional and deep soft regression-based
early prediction models are developed; 3) a local accumulative

frame feature (LAFF) is introduced for real-time early action
prediction; 4) our method is tested on three RGB-D action sets and
a unconstrained RGB action set (i.e., UCF101), and obtains more
reliable performances in predicting activities at varied progress
levels. The results have shown the benefit of modeling based on
soft labels for overcoming the challenge of early action prediction
and demonstrated that the early prediction on RGB-D sequences
works much better than that on RGB videos only.

2 RELATED WORK

Early Action Prediction. In many real-world scenarios like
surveillance, it would be more important to correctly predict an
action before it is fully executed. Many efforts are on developing
early action detectors or future action prediction systems [11],
[20], [23], [33], [41], [52], [63]. For example, Hoai et al. and
Huang et al. explored the application of max-margin learning in
early event recognition and detection [11], [17]. Ryoo developed
an early action prediction system according to the change of
feature distribution as more and more video streams are observed
[41]. Lan et al. proposed to represent human movements in a
hierarchical manner and use a max-margin learning framework to
select the most discriminative features for prediction [28]. Li et al.
proposed to mine some sequential patterns that frequently appear
in the training samples for prediction [29]. Vondrick et al. intended
to predict actions by anticipating the features of future video
frames in a unsupervised manner [52]. However, they assumed
that the progress level of ongoing action is provided along with
the observed sequence in the testing phase, which renders their
method less applicable in the real-world applications, since it is
hard to access the progress level of ongoing action until it has
been fully executed and observed when applied on unknown se-
quence. Recently, some researchers intend to conduct early action
prediction [22] or detection [37] by learning action progress levels
in an automatic manner. Yet, their prediction/detection is easily
hindered by the performance of learning action progression, which
is still a challenging problem needed to be carefully addressed. In
contrast, we aim at learning an early action predictor that can be
used for predicting action at any progress level. Thus our system
does not need to learn the progress level of ongoing actions while
performing early action prediction.

Recent research on human early action prediction is mainly
focusing on predicting activities based on on-going RGB videos
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Fig. 2. A graphical illustration of the training principle for our soft regression based early action prediction framework. In this framework, we develop
a novel online RGB-D action feature extractor and a soft regression model. The early action predictor and soft labels are learned jointly. In the
figure, operator

⊗
is a Kronecker product and 	 for the loss computation. Each curve in the second block (from the left hand side) corresponds to

one dimension of the computed integral features. For clarity and simplicity, we only present a small set of the extracted integral features.

[11], [23], [41], [63], while less work has been reported on RGB-
D sequences captured by low-cost depth cameras. In this work,
we consider the early prediction of RGB-D action sequence and
develop a real-time system for predicting human activities without
any extra prior information about the progress level of on-going
action when applied in practice. The most closest to our approach
is the online RGB-D early action prediction system developed
in [67]. However, the system in [67] is based on frame-level
prediction and the long-term motions are discarded in their model.
Moreover, the subsequences with partial action executions are not
exploited for prediction, which renders their method less accurate
for early action prediction.

Action recognition with depth cameras. The emergence of
Kinect device has lit up the research of human action recognition
with depth cameras in these years. In the literatures, how to
acquire a robust feature representation for the depth sequences
is one of the most fundamental research topics. A lot of RGB
video descriptors have been extended in order to characterize 3D
geometries depicted in depth sequences [5], [36], [39], [54], [66].
For example, Oreifej et al. developed their depth descriptors by
extending the idea of constructing histogram of oriented gradient
[5], [39], [66]. Considering the close relationship between human
pose(skeleton [44]) and action, some researchers seeked to repre-
sent human activities using positional dynamics of each skeleton
joint [7], [18], [62] or joint pairs [32], [38], [43], [64], [68]. Human
action may contain complex interactions between the actor and
objects, using depth and skeleton channels is not sufficient for de-
scribing the interactions. RGB channel is also utilized for feature
representation [13], [55], [59]. In this work, we construct a RGB-
D sequence feature by combining the local descriptors extracted
from color patterns, depth patterns and skeletons. Different from
the previous work that extracts features for off-line computation
[13], [14], [55], [59], we formulate our feature modeling in a
recursive manner so that it can be computed in real-time. The
conception of soft label has been recently explored in [16] for
improving RGB-D action recognition but not for early action
prediction, where the authors allow the human annotators to assign
a soft label for the video segment with ambiguity.

Recurrent Neural Network for Sequential Prediction. Recur-
rent Neural Networks (RNN) have been widely used to address
the sequential prediction problems in literatures, such as speech

recognition [9], human action/activity recognition [34], [35], [42],
scene labeling [40], [46], image caption [19], and object seg-
mentation [31]. RNN and its variants LSTM [34], GRNN [4],
etc. have achieved promising progresses on modeling temporal
dependency by sharing weights among the sequential data and
explicitly transferring information from the current time-step to
the next. The information passing strategy enables RNN models to
have a deep architecture over time and thus can model the complex
dependencies between temporal states. Most of existing RNN
models are developed for the completely executed sequences,
and don’t seek for predicting ongoing subsequences with partial
action executions. In this work, we focus on developing soft RNN
regression based early action prediction models without using any
progress level labeling of on-going sequence in testing, where we
embed learning soft label into the RNN framework on early action
prediction. Moreover, we further consider the discrepancy of soft
labels over different classes, and a Multiple Soft labels Recurrent
Neural Network (MSRNN) model is presented in this work.

A preliminary version of this work was reported in [15]. In this
work, we have further extended our soft regression-based early
action prediction model in the following three aspects. Firstly, two
more advanced deep soft regression models are further formulated
based on RNN, which are capable of 1) capturing the complex
dependency between successive action subsequences and 2) taking
the discrepancy of soft labels over different classes into considera-
tion, and thus can obtain better prediction performance. Secondly,
we have reported more analysis on comparing our proposed three
soft regression-based early action prediction models from non-
deep to deep in order to show the extra benefits of taking more
cues by soft RNN regression for early action prediction. Thirdly,
we have conducted more experiments and reported extensive
comparison on one additional large scale dataset consisting of a
set of complex actions [42].

3 OUR APPROACH

3.1 Problem Statement
We concern a real-time early action prediction system for predict-
ing on-going action sequence. In early action prediction, the action
depicted in observed sequence is always uncompleted before it has
been fully executed. Unlike the early action prediction considered
in [2], [23], we do not hold the assumption that the progress level
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of on-going action is known when applied in applications (i.e.
testing phase), since it is hard (if not impossible) to access progress
level of on-going action until it has been fully observed. In this
work, we propose a soft regression-based prediction framework
that can be generally used for performing early prediction of an
(on-going) action sequence at any progress level.
Notation. Throughout this paper, we use bold uppercase charac-
ters to denote matrices and bold lowercase characters (or Greek
letters) to denote vectors. For any matrix A, we use A(i, ·),
A(·, j) and A(i, j) to denote the ith row, the jth column and
the (i, j)-element of A, respectively. AT denotes the transpose
matrix of A. In this work, we denote the Frobenius norm of a
matrixA as ||A||F and the L1,2-norm as ||A||1,2 and the l2 norm
of a vector a as ||a||2 . The L1,2-norm for matrix A ∈ Rm×n is
defined as:

||A||1,2 =
n∑

j=1

√√√√ m∑
i=1

A(i, j)
2

=
n∑

j=1

r(j). (1)

Here, r(j) represents the l2 norm of the jth column A(·, j). Then
we can obtain the generalized gradient2 ∂||A||1,2

∂A(i,j) = ∂r(j)
∂A(i,j) =

A(i,j)
r(j) . This equation indicates that the gradient of ||A||1,2 with

respect to A can be easily obtained by performing a column-wise
normalization on the matrix A. Here we denote this column-wise
normalization operator as φ(·) for convenience.

3.2 Local Accumulative Frame Feature (LAFF)
Since existing RGB-D sequence features [13], [55], [59] are not
for online feature extraction, they are less applicable for online
early action prediction. To address this issue, we propose an
effective RGB-D sequence feature representation by employing
the widely used integral map computing technique. In detail,
we extract local HOG descriptors from RGB and depth patches
around each body part and extract relative skeleton features for
each frame in order to capture action contexts including human
motions, appearance, shapes of human body parts, the manipulated
objects and even the scene (background).

Inspired by the successful use of spatial pyramid for modeling
the spatial structures among different image patches, we construct
a three-level temporal pyramid to capture temporal structures by
repeatedly partitioning the observed sequence into increasingly
finer sub-segments along temporal dimension. The features of the
frames found in each sub-segment are accumulated together using
a mean pooling method. The concatenation of all accumulative
features forms our local accumulative frame feature (LAFF).

In the following, we show that LAFF can be calculated
efficiently by constructing an integral feature map Int:

Int(·, T ) =
T∑

t=1

F (·, t), (2)

where F ∈ Rd×T is the local features extracted from the frames
in a sequence, d denotes the feature dimension, and T is the total
number of observed frames. Note that the integral map Int could
be computed recursively along the temporal dimension. Based on
Int, we can compute the accumulative feature x between frames
t1 and t2 (t2 > t1) as follows:

x =
Int(·, t2)− Int(·, t1 − 1)

t2 − t1 + 1
. (3)

2. We would add a small positive constant ε to r(j) when it is zero.

Therefore, the LAFF features with seven temporal intervals
(1+2+4 sub-segments in the three-level pyramid) can be efficiently
computed from the formulated integral feature map using Eq. (3).
This enables online and real-time computation.

3.3 Soft Linear Regression (SLR) based Early Action
Prediction
We assume that each training action sequence contains complete
action execution. To train an action predictor, similar to existing
works [23], [41], we uniformly partition each fully observed
training sequence into N segments of equal length. Let V (·, ·, ·)
be the full sequence, and we use a vector3 π∈ RN+1 to
indicate the temporal locations of the segments. For example,
V (·, ·,π(1) : π(2)) represents the sequence of the first segment.
Always, we call V (:, :,π(1),π(n+ 1)) an action’s subsequence
with progress level n. And correspondingly, its observation ratio
can be defined as n

N .
Let {(X1,y1), (X2,y2), ..., (XI ,yI)} be the training

dataset that consists of I examples from C classes, where
yi ∈ RC is a label vector of Xi, each Xi ∈ Rd×N has N
instances, and each instance Xi(·, n) is represented by the LAFF
feature of the subsequence of progress level n. The label vector
yi is a binary vector, having its jth entry set to 1 if it is from the
jth class and 0 otherwise.

Indeed, a subsequence is ambiguous, because action sequences
of different types may contain similar subsequences and the
unobserved duration of an action sequence could contain some
important cues for identifying the whole action. Thus, labeling
it as the label of its full sequence could cause confusion. To
overcome this problem, we learn a soft label for each subsequence
and define the label of the subsequence with a progress level n
as α(n)yi where 0 ≤ α(n) ≤ 1. α(n)yi can be conceived
as how likely the subsequence is from the action class yi. Using
and learning soft labels can alleviate the confusion caused by the
fact that subsequences from different actions could contain similar
action elements (See Figure 1 for example). In addition, it also
enables the prediction of ongoing action at any progress level in
our modeling.

To learn the soft labels rather than setting them empirically
and manually, we form a soft linear regression (SLR) model for
learning soft labels and action predictor jointly as follows:

min
W ,α

I∑
i=1

N∑
n=1

Prediction loss term︷ ︸︸ ︷
s(n)||W TXi(·, n)− yiα(n)||1,2 +

ξ2
2
||W ||2F

s.t. αTeN = 1, 0 6 α 6 1, ξ2 ≥ 0, (4)

where W ∈ Rd×C is the transformation matrix of a multi-
class discriminative linear predictor and it is constrained by a
conventional ridge regularization. Since the prediction loss of sub-
sequences at different progress levels should contribute differently
to the prediction, we introduce s(n) to weight the regression loss
of each subsequence. s is set to monotonically increase w.r.t n, and
its effect is tested in Section 4.5. By letting S denote the diagonal
matrix generated by s, the prediction loss can be expressed in a
matrix form as ||(W TXi − yiαT )S||1,2. The ‖ · ‖1,2 norm is
used to measure the regression loss because it is robust to noise
and outliers [30].

3. Intuitively, we need the vector to satisfy the boundary constraint π(1) =
1, π(N + 1) = T and the monotonicity constraint π(t1) ≤ π(t2) for any
t1 ≤ t2.
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(a) soft linear regression (SLR) (b) soft RNN (SRNN) regression

Fig. 3. Illustration of the main difference between our soft linear regression (SLR) model and soft RNN (SRNN) model. In the SLR model, prediction
is achieved based on the currently observed subsequences. While in the SRNN model, the dependency between all the sequentially arrived
subsequences is explicitly explored by a temporally connected hidden layer. Hence, the output is obtained based on both the currently observing
subsequence and historical subsequences. The objectives of both the SLR and SRNN models are to minimize the loss between outputs and the
corresponding soft labels.

In the above formulation, we constrain α(N) = αTeN = 1
in order to ensure that a strong label can be derived if the entire
sequence is observed, where eN is a binary vector with only the
N th entry being 1. In addition, we also restrict all entries in α
within [0, 1].

In order to make sure the variation of soft label is smooth, we
further impose a consistency constraint on α as follows:

min
W ,α

I∑
i=1

N∑
n=1

||(W TXi − yiαT )S||1,2︸ ︷︷ ︸
Prediction loss term

+
ξ1
2

||Oα||22︸ ︷︷ ︸
Consistency term

(5)

+
ξ2
2

Regularization term︷ ︸︸ ︷
||W ||2F

s.t. αTeN = 1, 0 6 α 6 1, ξ1, ξ2 ≥ 0. (6)

Consistency term ||Oα||22. This constraint is to enforce the
soft-label smoothness between subsequences at two consecutive
progress levels for an action. We compute the gradient of soft
labels and measure its norm in order to control the variations of
soft labels between subsequences. The effect of the consistency
term is controlled by ξ1. As the gradient operator Oα is a linear
operator, the consistency term can be rewritten in a matrix form

Gα equivalently, where we set G as

 1 −1 0 0

0
. . .

. . . 0
0 0 1 −1

 ∈
R(N−1)×N . In this way, we can rewrite our soft linear regression
(SLR) model as follows:

min
W ,α

I∑
i=1

||(W TXi − yiαT )S||1,2 +
ξ1
2
||Gα||22 +

ξ2
2
||W ||2F

s.t. αTeN = 1, 0 6 α 6 1, ξ1, ξ2 ≥ 0. (7)

Model Optimization for SLR. We solve our soft linear regression
(SLR) model (7) by a coordinate descent algorithm which opti-
mizes over one parameter at each step while holding the others
fixed. The objective function (7) of SLR can be monotonically
decreased with a guaranteed convergence by iterating over the
following two steps. At step 1, we optimize the predictor W with
α fixed. At step 2, we optimize it over α with W fixed. Please
refer to our conference version [15] for more details.

3.4 A Soft RNN (SRNN) Regression based Early Action
Prediction

In real-time system, subsequences are observed sequentially, and
the prediction on the previous subsequence could be useful for
performing prediction on the subsequence at the next progress
level. In this section, we further explore the relationship between
the prediction of successive on-going subsequences by developing
a soft RNN-based framework, which embeds learning soft labels
into the RNN model. A graphical illustration of the difference
between our SLR and SRNN can be found in Figure 3.

To detail our soft RNN-based framework, we would first re-
formulate the soft linear regression (SLR) model (formula (7)).
In the soft regression framework, each element in the soft label
vector α is associated with an subsequence at certain progress
level. Our objective is to minimize the prediction loss (i.e. the gap
between the output of score function for the tth subsequence and
α(t)yi). In general, the objective function of SLR model (7) can
be re-formulated as

min
θ,α

I∑
i=1

L(f(θ,Xi),yiα
T ,S) +

ξ1
2
||Gα||22 +

ξ2
2
R(θ). (8)

Here, we use θ to denote the learnable model parameters. In the
above formulation, R(θ) is a regularizer used to penalize the
parameters with large values. L(f(θ,Xi),yiα

T ,S) is a loss
function used for guiding the predictor and soft labels learning,
where f(θ,Xi) is a score function indicating the confidences
of predicting the class label of each subsequence, whose LAFF
features are indicated by Xi. Taking the model SLR in formula
(7) for example, R(θ) is is defined as ||W ||2F (θ represents
W T in this case). The score function f(θ,Xi) is defined
as the inner production between the model parameters and in-
put feature (i.e., θTXi). L(f(θ,Xi),yiα

T ,S) is defined as
||(W TXi − yiαT )S||1,2.

We extend SLR by replacing the linear score function with
a deep recurrent neural network (RNN) architecture. Such an
extension enables explicitly modeling the dependencies among the
sequentially observed subsequences. Specifically, for speeding up
the training of our deep regression model, here we set the predic-
tion loss L(f(θ,Xi),yiα

T ,S) as ||(f(θ,Xi) − yiαT )S||2F .
The score function f(θ,Xi) is given by the outputs of recurrent
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neural network [o(1),o(2), ...,o(N)], which can be formulated
as follows:

h(t) = ReLu(UT
hhh(t− 1) + UT

xhXi(:, t) + b),

o(t) = UT
hoh(t) + c.

(9)

where Uhh,Uxh,Uho,b, and c form the model parameters θ,
which would be learned in the training stage. h(t) is the hidden
state of the tth subsequence and its information will be trans-
formed to the future subsequences through matrix Uhh. Here we
do not employ an additional softmax layer to normalize the output
o into a probability vector as done in other RNN architectures
[9], [46]. This is because the softmax layer is unsuitable for our
soft regression model as the sum of the elements in the output of
softmax operator is 1, while the sum of the elements in α(t)yi is
α(t), whose value is within [0, 1]. We use the ReLu operator as
our activation function to non-linearly map the input features and
the previous time-step hidden state into the hidden state space of
the current time-step. In addition, we formulate the regularization
term R(θ) as the square of L2-norm (l2-norm) of the model
parameters θ (i.e. Uhh,Uxh,Uho,b, and c) and it can serve
as a weight decay term to penalize weights with large values.

Model Optimization for SRNN. Similar to the optimization
for the soft linear regression (SLR) model, we also develop a
two-step optimization algorithm to solve the SRNN model. The
optimization is achieved by iterating over the following two steps.

- STEP 1. For fixed soft labels α, optimize the RNN parameters
θ (i.e., Uhh,Uxh,Uho,b and c):

min
θ

I∑
i=1

L(f(θ,Xi),yiα
T ,S) +

ξ2
2
R(θ), (10)

This is a standard RNN optimization problem, and the parameters
can be determined by a stochastic gradient descent (SGD) algo-
rithm with momentum and back propagation through time (BPTT)
[60].

- STEP 2. For fixed RNN parameters θ, optimize the soft labels
α:

min
α

I∑
i=1

L(f(θ,Xi),yiα
T ,S) +

ξ1
2
||Gα||22. (11)

s.t. αTeN = 1, 0 6 α 6 1. (12)

It is hard to directly solve the above problem because the existence
of the bounded constraints (12). Here, we introduce a method to
find an approximate solution based on the popularly used projected
gradient descent technique. Firstly, we would solve the following
optimization problem without any constraint:

min
α

I∑
i=1

L(f(θ,Xi),yiα
T ,S) +

ξ1
2
||Gα||22. (13)

The above unconstrained problem can be optimized using a
gradient descent method. The updated point is then projected into
the feasible solution space {α ∈ RN | 0 ≤ α ≤ 1,αTeN = 1}
to obtain a feasible solution.

3.5 Soft RNN Regression with Multi-soft Labels
Different actions could perform at different progress levels at a
time even if they start at the same time. That means the soft
labels should be different for different actions at a time. Hence,
we further extend the proposed soft RNN regression model by

explicitly learning a category-specific soft label vector for each
action type. We call this extended model as Multiple Soft labels
Recurrent Neural Network (MSRNN), which is formulated as

min
θ,{αc},α

C∑
c=1

Ic∑
i=1

∆(c,yi)L(f(θ,Xi),yiα
T
c ,S)︸ ︷︷ ︸

Prediction loss term

+
ξ1
2

C∑
c=1

||Gαc||22︸ ︷︷ ︸
Consistency term

+

regularization term︷ ︸︸ ︷
ξ2
2
R(θ) +

Between−class consistency loss term︷ ︸︸ ︷
ξ3
2

C∑
c=1

||αc −α||2F .

(14)

Here, αc is the soft labels of class c, Ic indicates the number of
training samples for action class c, ∆(c,yi) is a class consistency
term, whose value is 1 if the action class of the ith sample is
c; otherwise, it is 0. Compared with the SRNN model described
in the last section, MSRNN would learn a category-specific soft
label vector for each action class along with minimizing the
between-class consistency loss ||αc −α||2F . In the between-class
consistency loss, we expect that the soft labels learned for each
action class can share some variation tendencies by making them
approach a common soft label vector α. This is reasonable in
practice, as for most of the actions, the more about the actions
are observed, the more confident the system generally becomes
for early action prediction [17], [23]. In general, the soft labels
for each action overall increase over time, although it could
be observed that sometimes the actor has completed the action
execution in the last two snapshots, which is not informative for
prediction and thus becomes redundant as shown in Figures 6 and
7, which would be discussed elaborately in Section 4.3.

Model Optimization for MSRNN. Similar to our optimization for
the SLR and SRNN models, we use a coordinate descent method
to solve MSRNN (14) and obtain a set of optimal parameters
{θ,αc,α}c=1,2,...,C by iterating the following three steps.

- STEP 1. We optimize the RNN parameters θ with the soft labels
{αc}c=1,2,...,C and α fixed. The updating of θ is identical to that
in the optimization of SRNN problem (10).

- STEP 2. We optimize the class-specific soft labels
{αc}c=1,2,...,C with the others fixed. Specifically, we optimize
the following problem:

min
{αc}

C∑
c=1

Ic∑
i=1

∆(c,yi)L(f(θ,Xi),yiα
T
c ,S) +

ξ1
2

C∑
c=1

||Gαc||22

+
ξ3
2

C∑
c=1

||αc −α||2F .

s.t. αT
c eN = 1, 0 6 αc 6 1, c = 1, 2, ..., C.

The above problem can be decomposed into C independent soft
label learning sub-problems:

min
αc

∆(c,yi)L(f(θ,Xi),yiα
T
c ,S) +

ξ1
2
||Gαc||22

+
ξ3
2
||αc −α||2F .

s.t. αT
c eN = 1, 0 6 αc 6 1.

This is a standard single soft label learning problem and can be
solved by the STEP 2 algorithm described in Section 3.4.
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Fig. 4. Some examples from the ORGBD, SYSU 3DHOI and NTU Large Scale datasets. The first, third and fifth row present RGB snapshots from
ORGBD, SYSU 3DHOI and NTU Large Scale set, respectively. The second, forth and sixth row present the corresponding depth images.

Algorithm 1 Optimization for MSRNN. The term objUpdate
indicates the value variation of the objective function of Formula
(14).
Require:

Input: Xi,yi, ξ1, ξ2, ξ3;
Initialization: the RNN parameters θ are random matrices, α is
a vector with N elements monotonically increasing from 0.25 to
1, IterOut = 1,maxIter = 400;

Ensure:
1: while objUpdate ≥ thr and IterOut < maxIter do
2: Update RNN parameters θ using SGD algorithms;
3: Update soft label vectors αc using gradient descent method;
4: α← 1

C

∑C
c=1 αc; IterOut++;

5: end while
6: return θ,α

- STEP 3. Finally, we update the common soft label vector α by
solving the following minimization problem:

min
α

ξ3
2

C∑
c=1

||αc −α||2F .

The above problem can be solved by generally setting α as
1
C

∑C
c=1αc. We summarize the overall procedure for the opti-

mization of MSRNN model in Algorithm 1.

3.6 Early Prediction

Given a probe ongoing action subsequence where the progress
level is unknown, our soft regression models (SLR, SRNN and
MSRNN) output the prediction scores using the corresponding
LAFF features {x(t)}t=1,2,..... Then the prediction was made by
finding the class label that has the maximum score. Our methods
can predict the labels of ongoing actions without knowing their
progress levels in testing.

4 EXPERIMENTS

We mainly evaluated our methods on three benchmark 3D action
datasets: Online RGB-D Action dataset [67], SYSU 3D HOI dataset
[14], and NTU Large Scale dataset [42]. In the following, we
first briefly introduce the compared methods and implementation
details, and then describe the experimental results.

4.1 Compared Methods & Implementation
4.1.1 Compared Methods
We have implemented the following approaches using the same
proposed features (i.e. LAFF) for comparison:
SVM on the Complete Activities (SVM-FA). In order to see
how well our early action prediction model approximates the
action recognition results when whole sequence but not partial
of it is observed, we trained a generic action classifier (SVM)
on the completely executed action sequences. During the testing
phase, all the ongoing subsequences were predicted using the
learnt action classifier.

Brute-force Prediction using SVM (BPSVM). It learns an action
predictor from all the available subsequences. In this baseline, we
assigned the label of each subsequence with the label of its full
sequence (i.e., hard labeling). That means these labels were not
soft labels as described in our methods. This baseline is introduced
in order to show the benefits of using soft labels. We denote it as
“BPSVM”.

Multiple Stages SVM (MSSVM). We trained a SVM predictor
on the sequences obtained at each progress level separately. While
in the testing phase, we followed the same assumption in [23] that
the progress level of ongoing action is known and thus we can
directly make the prediction using the predictor specifically trained
for that progress level. Although practical system is hard to have
a chance to obtain the progress level of ongoing action sequence
until the action has been completely executed, it still serves as a
good reference for benchmarking early action prediction models.
We denote this baseline as “MSSVM”.
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(a) ORGBD set (b) SYSU 3D HOI set (c) NTU Large Scale set
Fig. 5. Comparison results on the ORGBD (a), SYSU 3DHOI (b), and NTU Large Scale (c) sets. “MP”, “DCSF”, and “DO” denote “Moving Pose
[10], [67]”, “DSTIP+DCSF [61], [67]”, and “Discriminative Order-let [67]”, respectively. Best viewed in color.

DeepSCN and RankLSTM. We also compared our soft regres-
sion model with the DeepSCN [25] and RankLSTM [37] models.
The source codes for DeepSCN and RankLSTM are not available
for benchmarking, we re-implemented them strictly by following
the descriptions in [25], [37]. For a fair comparison, we fed our
LAFF features into their learning frameworks and reported the
best results among a large range parameter settings.

Other early action prediction methods. In addition to the above
comparison, we also reported the results of using KNN classifier
to predict actions, where K is set to 5. We further compared our
method with the state-of-the-art early action prediction systems
developed for RGB-D sequences [67] and RGB videos [2], [41].

The baselines “BPSVM”, “MSSVM” and “SVM-FA” were
implemented by ourselves and tested with different SVM param-
eters. Our main experimental comparison was conducted based
on the features introduced in Sec. 3.2. While using CNN features
as the basic features would further improve the early prediction
performance, using CNN features will largely slow down the
speed of early prediction, from real time to non-real time. We
will discuss this issue in Section 4.6.

4.1.2 Implementation
For our LSR model, we set the regularization parameters ξ1 and ξ2
as 5000 and 1 throughout all the experiments, respectively. While
for the SRNN and MSRNN models, we set the parameters ξ1, ξ2
and ξ3 as 500, 0.005 and 0.1, respectively. Note that parameter ξ2
also serves as a decay rate in the optimization of our RNN based
models. The maximum progress levelN was set as 40. The weight
s(n) can be understood as a prior weighting on the regression
loss of the nth subsequence in Eq. (6). In general the loss of the
subsequence at the end of the sequence is more important as the
type of action becomes more clear. Hence, we increased s(n) in
Eq. (6) from 0.25 to 1 uniformly. Its influence will be studied
in Section 4.5. We employed the stochastic gradient descent with
momentum approach [50] to optimize the proposed SRNN and
MSRNN, where the momentum factor was set as 0.9. To further
speed up our optimization, we used PCA to reduce the dimension
of the extracted LAFF features, where 98% of variance is retained.

4.1.3 Evaluation Criteria
For quantitative comparison, we present the accuracies of an
early action prediction system for predicting actions at different
progress levels. These accuracies can indicate how well the early
action prediction system predicts early actions. We also plot the
accuracies against observation ratios as a curve (See Figure 5 for

TABLE 1
Prediction (%) on ORGBD set. “MP”, “DCSF”, and “DO” denote

“Moving Pose [10], [67]”, “DSTIP+DCSF [61], [67]”, “Discriminative
Order-let [67]”, respectively. The last row is for AUC.

Observa-
tion ratio MSSVM BPSVM SVM-FA MP DCSF DO RankLSTM DeepSCN Ours

10% 53.1 54.5 53.6 25.9 14.3 43.8 57.1 59.2 60.7
60% 67.4 64.7 67.4 33.9 55.4 63.4 69.2 62.3 71.4
80% 70.1 66.1 70.1 38.4 61.6 71.4 70.5 66.8 73.2
100% 70.1 66.1 70.1 38.4 61.6 71.4 71.4 65.9 73.2
AUC 64.7 61.8 64.9 34.3 49.5 63.0 66.1 62.8 68.7

example) and the area under the curve (AUC) is computed to
measure the overall performance of early action prediction system.
In addition, the prediction speed is also important for some real-
applications. We also report the speeds of the prediction systems.

4.2 Results on Online RGB-D Action Datasets

The Online RGB-D Action Dataset (ORGBD) was collected for
online action recognition and early action prediction [67]. Some
action examples are shown in Figure 4. For evaluation, we used
the same-environment evaluation protocol detailed in [67], where
half of the subjects were used for training a predictor and the rest
were used for testing. In this setting, there are totally 224 RGB-
D sequences of sixteen subjects, including seven human-object
interaction activities (drinking, eating, using laptop, reading cell
phone, making phone call, reading book and using remote). The
accuracies are computed as an average over a two-fold validation.

We compared the proposed MSRNN with the baselines and
other related prediction methods as described in Section 4.1.
The results are presented in Figure 5(a) and Table 1. As shown,
our method can produce better prediction results at most of
the observation ratios than the competitors. We also find that
the performance gap became larger if fewer action frames were
observed. This is as expected because our soft regression model
explicitly makes use of the subsequences that contain partial
action executions for obtaining a reliable predictor. By carefully
examining the comparisons of our method MSRNN, the base-
lines BPSVM, and SVM-FA, we can find that the introduction
of the soft-label learning mechanism can significantly improve
prediction performance. It also worked better than the MSSVM
model, which predicts ongoing activities with known progress
level using multiple pre-trained predictors. We also observe that
our soft regression model performed better than DeepSCN [25]
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Fig. 6. An example from the SYSU dataset with prediction scores. We uniformly selected 10 snapshots from a sequence of calling with a phone
for this illustration. The top row of the figure shows the confidences of our model correctly predicting the underlying subsequences observed until
the time of each respected snapshot. It could be observed that the actor has completed the action execution in the last two snapshots, which is not
helpful for prediction and thus becomes redundant.

and RankLSTM [37] with the same inputs, which demonstrates
the effectiveness of our model for predicting early actions.

In addition, we also compared our method with the state-of-
the-art prediction algorithms on this set [61], [67]. The proposed
method outperformed the state-of-the-art model (discriminative
order-let model) [67] by a large margin (more than 10 percent)
when only 10% of the sequence were observed, which clearly in-
dicates that our system can perform early prediction of action more
accurately. It could also be observed that when full sequences
were provided, our predictor still performed better and obtained an
accuracy of 73.2%, which is 1.8% higher than the discriminative
order-let model. This is probably because that the long-duration
motion information, ignored by the frame-level prediction model
[67], is very important for identifying human activities, especially
at early action stages where the observed action evidence (such
as human pose and object appearance etc.) is not sufficient for
accurate early action prediction.

4.3 Results on SYSU 3D Human-Object Interaction Set
The SYSU 3D Human-Object Interaction Set (SYSU 3D HOI
Set) 4 consists of 12 different activities from 40 participants,
including playing with a cell-phone, calling with a cell-phone,
mopping and sweeping etc. Some snapshots of the activities are
presented in Figure 4. In this dataset, each action involves a type
of human-object interaction, and the participant’s motions and the
objects he/she manipulated are similar among some activities [13].
For evaluation, we employed the cross-subject setting popularly
used in RGB-D action recognition. In particular, we trained our
predictor and all compared methods using the samples performed
by the first 20 subjects and then tested on the rest subjects.

The prediction comparison results are presented in Table 2
and Figure 5(b). As shown, our predictor can obtain a good
performance at most of the progress levels and it significantly
outperformed BPSVM and SVM-FA. We observed that, when
additionally using the progress levels in prediction, the model
MSSVM performs slightly better than our MSRNN at early stages,
but both performed comparably after that. And our methods
perform better when sufficient action sequences are observed (e.g.,
the whole action sequences are used for prediction). We also
observe that our method and most of the competitors obtain the
best prediction accuracy when 80% of the action sequences are
observed. The performance began to drop if more frames were
used, and we found that it is because some videos clipped in this
set contain some redundant frames as illustrated in Figure 6.

4. It can be downloaded from http://isee.sysu.edu.cn/~hujianfang/

Fig. 7. Prediction scores for eight specific samples from different action
classes. The vertical axis indicates prediction scores and the horizontal
axis is the progress level of subsequence.

Fig. 8. Example soft labels learned on the SYSU 3D HOI set. The
vertical axis indicates the values for the soft labels and the horizontal
axis is the progress level of subsequence.

We also plot the prediction scores (i.e., the values of o(t+ 1))
in Eq. (9) obtained for some specific action samples in Figure 7.
It can be seen that the prediction confidences in general, but not
always, increase with the observation ratio. This is as expected
because more action observation does not always mean more
discriminative. Ongoing observations sometimes could confuse
the system for some specific action samples. However, from a
global view, more action observations are in general beneficial for
early action prediction.

The values of the learned soft labels are shown in Figure 8. It
could be observed that the soft labels start from different positive
values for different activities. This is as expected because different
activities contain contextual cues of different strength at their early
stages, for instance, mopping contains stronger action context
(e.g., shapes and textures of objects) than taking out wallet. In
general, the values of soft labels increase as when more sequences
of actions are observed for prediction.
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TABLE 2
Prediction (%) on the SYSU 3D HOI set. The last row is for AUC.

Observation
ratio KNN MSSVM BPSVM SVM-FA RankLSTM DeepSCN Ours

10% 35.8 50.8 45.0 33.8 48.7 45.5 47.5
60% 61.3 78.8 68.3 72.9 75.4 67.2 80.4
80% 65.0 82.5 70.8 75.8 77.5 73.8 82.5
100% 62.1 79.2 70.0 79.2 76.6 74.7 79.6
AUC 54.7 71.1 61.9 61.0 68.5 62.2 71.6

4.4 Results on the NTU Large Scale dataset

This dataset was collected for the research of large scale RGB-
D action recognition. It contains a total of 56,880 RGB-D video
clips involving 60 action classes. This set is very challenging as
most of the considered activities involve complex interactions,
such as human-object interactions (e.g. drinking and eating etc.)
and human-human interactions (e.g. hugging etc). All the activities
were performed by 40 subjects and captured from different view
points using several Kinect v2 cameras. For evaluation, we fol-
lowed the cross-subject setting described in [34], [42] and used the
samples performed by 20 certain subjects for the model training
and the rest for testing. In total, we have 40,320 training samples
and 16,560 testing samples.

We present our comparison results in Figure 5(c) and Table
3. As shown, our MSRNN model obtained the best prediction
performance and outperformed the competitors SVM-FA, BPSVM
and KNN by a large margin (more than 14% in terms of AUC).
We can observe that additionally using the progress level of an
action to train predictors is beneficial. So, MSSVM performed
comparably to our MSRNN model at the early stages (≤ 0.5),
but performed significantly worse after that. Especially, when
complete action executions were observed, our model can obtain
a recognition accuracy of 69.24%, which is comparable with the
state-of-the-art recognition result (69.2%) reported in [34], where
a complex LSTM architecture with trust gate, forget gate and input
gate was developed. This implies that our proposed soft regression
framework is also beneficial for the task of action recognition
and can obtain the state-of-the-art recognition result. As expected,
our soft regression model outperformed the RankLSTM [37] and
DeepSCN [25] approaches again, which demonstrates the efficacy
of our soft label learning framework for early action prediction.
We also note that the prediction results of most methods on the first
10% frames on this set is much lower than that on the ORGBD
and SYSU 3D HOI sets. This is because that the NTU Large
Scale set is much more challenging with larger scales and action
class diversity, including body actions, gestures, human-object
interactions, and even human-human interactions etc. Moreover,
some actions in this set contain similar appearance information
(e.g., wearing on glasses vs. taking off glasses), which plays an
important role for the early action prediction, especially when the
actions at early stages do not include enough motion cues for
characterizing actions. Please refer to our supplementary material
for more details and experimental analysis.

4.5 More Evaluations

We further evaluated the performances of our developed early
action prediction system. Since evaluating our methods on the
NTU large scale dataset is quite time-consuming and it takes about
4-5 days for a single round of optimization, in this section, we

TABLE 3
Prediction (%) on the NTU Large Scale set. The last row is for AUC.

Observation
ratio KNN MSSVM BPSVM SVM-FA RankLSTM DeepSCN Ours

10% 7.5 13.5 11.7 9.2 11.5 16.8 15.2
60% 26.0 53.5 34.0 36.8 55.9 54.6 59.1
80% 34.5 59.6 39.1 53.5 64.4 60.1 67.4
100% 37.0 62.4 40.1 62.4 65.9 58.6 69.2
AUC 21.9 43.0 28.4 32.2 43.1 43.2 46.6

TABLE 4
Comparison of our RGB-D early action prediction methods and the

conventional RGB video based early action prediction approaches on
the SYSU 3D HOI set. SLR (RGB) and MSRNN (RGB) indicate the
SLR and MSRNN models tested on the RGB channel, respectively.

Observation
ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 AUC

DBOW [41] 31.7 40.0 43.8 46.7 52.1 54.2 58.8 59.6 62.1 62.5 49.8
SC [2] 30.4 41.3 50.8 53.3 57.1 57.9 57.9 58.8 60.4 61.3 51.5
MSSC [2] 30.4 40.8 47.1 55.0 56.7 59.6 57.5 60.8 62.1 62.9 51.9
SLR(RGB) 38.3 45.8 52.9 60.8 63.3 67.5 69.6 70.4 70.4 70.8 59.5
SLR 45.8 55.0 64.6 71.3 73.8 76.3 80.8 81.3 80.8 80.0 69.6
MSRNN(RGB) 37.9 46.3 57.9 62.1 67.5 70.4 71.7 71.3 70.8 71.3 62.7
MSRNN 47.5 56.7 66.7 75.4 78.3 80.4 81.7 82.5 81.7 79.6 71.6

mainly conducted experiments on the SYSU 3DHOI set with cross
subject setting, which is quite larger than the ORGBD dataset.

RGB-D prediction vs. RGB. Intuitively, the RGB-D early action
prediction can be casted as a RGB early action prediction problem
by discarding the depth and skeleton modalities and then RGB
early action prediction methods can be easily implemented. Here,
we tabulate the results on the SYSU 3DHOI set obtained by
methods (Dynamic BOW [41], SC, and MSSC [2]) developed
in [2]5 as well as our method in Table 4. As shown, our soft
regression models (both SLR and MSRNN) have a significant
advantage over these methods even using the same input data
(RGB data). From the results, we can conclude that a RGB-D
based early action prediction system has its unique benefit.

Evaluation on the elements used in the RGB-D. Results in Table
5 show that the predictor (using MSRNN model) learned from
the combination of RGB, depth and skeleton channels is better
than only using one of them. This is reasonable because RGB,
depth and skeleton sequences indeed characterize activities from
different aspects, and any single channel is intrinsically limited
in overcoming the inherent visual ambiguity caused by human
(object) appearance changes, cluttered background, view variation,
and occlusions etc.

Benefits of learning soft labels α. For comparison, we imple-

5. The codes are downloaded from http://www.visioncao.com/index.html.

TABLE 5
Evaluation on the elements in RGB-D early action prediction on SYSU

3D HOI set. We use RGB-D to indicate that the predictor is learned
from all the available data for prediction (i.e. RGB, DEP and SKL).

Observation
ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 AUC

RGB 37.9 46.3 57.9 62.1 67.5 70.4 71.7 71.3 70.8 71.3 61.3
DEP 32.5 44.2 53.8 62.9 67.9 71.3 72.9 72.5 72.5 70.4 60.6
SKL 30.8 36.3 44.2 45.8 53.3 56.7 58.7 63.3 65.4 65.8 50.7
RGB-D 47.5 56.7 66.7 75.4 78.3 80.4 81.7 82.5 81.7 79.6 71.6
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TABLE 6
Evaluations of different soft regression models on SYSU 3D HOI set

(%).

Observation
ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 AUC

SLR 45.8 55.0 64.6 71.3 73.8 76.3 80.8 81.3 80.8 80.0 69.6
MSLR 45.4 56.7 65.4 74.6 75.8 76.7 79.6 80.4 80.8 80.0 70.1
SRNN 44.2 55.8 65.4 74.6 77.5 78.8 79.2 80.4 81.7 79.6 70.2
MSRNN 47.5 56.7 66.7 75.4 78.3 80.4 81.7 82.5 81.7 79.6 71.6

mented two baselines based on the formulated MSRNN model,
where different strategies were employed to manually determine
the soft labels: 1) all the elements of α were set as 1; 2) α was
set as a vector whose elements uniformly increase from 0.5 to
16; and 3) we randomly generated a set of soft labels for our
regression model with 20 replicates. As shown in Figure 9(a), the
prediction accuracy would decrease if the soft labels were simply
defined as the label of the whole sequence or randomly generated,
which justifies that learning soft labels can benefit our predictor
learning. As expected, using the randomly generated soft labels
for prediction obtains the worst performance. We also observed
that using uniformly increasing soft labels can also obtain an
acceptable prediction result in our experiments, which illustrates
that sequences with more action executions often contain more
action cues for prediction.

The influence of consistency constraint. We studied the influence
of the parameter ξ1, which is employed to control the effect of the
consistency term in our MSRNN model (Formula (14)). Figure
9(b) shows the performances of setting ξ1 as 0, 50, 500, 5000
and 500000, respectively. As shown, our method can obtain a
promising result with ξ1 = 500. In general, a small or large ξ1
would lead to a lower AUC. Especially, when ξ1 is larger than a
certain number (e.g. 500000), the learned soft label is unhelpful
as all of its entries will be the same and thus lower prediction
performances were observed.

Impact of the s. In our soft regression model (6) and (14), a
vector s is introduced to control the contribution of the regression
losses caused by the subsequences of different progress levels.
Here, we tested its influence. In the evaluation, we considered
five different settings for s, which were shown in Figure 9(c).
More specifically, in the settings colored in ‘blue’, ‘green’, and
‘red’, the values for s increase from 0.25 to 1 based on different
curves. For the settings ‘magenta’, s decreases from 1 to 0.25. And
for the setting ‘cyan’, the s remains unchanged. The prediction
performance obtained by each setting was presented in Figure
9(d) with the same color. As shown, the performance with an
s with incremental values is better than the constant or even the
diminishing ones. This is because the subsequences at the latter
progress levels should contain more action execution and mis-
predicting them should lead to a relatively large loss.

Comparisons of SLR, MSLR, SRNN, and MSRNN. We have
developed different soft regression models to learn a reliable
RGB-D action predictor, i.e., linear regression models with a
single soft label vector (SLR) or multi-soft labels (MSLR)7, RNN

6. We observe that the learned soft labels in general start from around 0.5.
Thus, here we set the start of the soft labels as 0.5. We also tested the case of
increasing soft-labels monotonically from 0 to 1 with a step of 1/N, and results
were worse.

7. The MSLR model is formulated by learning a set of class-specific soft
labels for the SLR model, in a similar way to that of MSRNN.

(a) Evaluation on soft label learning. (b) Evaluation on soft label consisten-
cy.

(c) Visualization of s used in evalua-
tion.

(d) Prediction performance for s in
(c)

Fig. 9. More evaluations on the system performance. “AUC” indicates
the area under all the presented observation ratios. Best viewed in color.

regression with a single soft label vector (SRNN) or multi-soft
labels (MSRNN). Here, their performances are reported in Table 6.
As shown, the MSRNN model produced the best prediction results
on the SYSU 3DHOI set. And the performance gaps between
MSRNN and other soft regression models are clear, especially
with the observation ratios are smaller than 60%. It could also be
observed that all of our soft regression models produced the best
results when 80% ∼ 90% of the actions were observed. This is
because some videos clipped in this set contain some redundant
frames as illustrated in Figure 6. We can also observe that the
models with multi-soft labels (MSLR and MSRNN) outperformed
the models with a single soft label vector (SLR and SRNN), which
means that learning a category-specific soft label vector for each
action type is beneficial for our early prediction. Similar results
can be especially observed on the much larger NTU dataset in the
supplementary.

The convergence of the soft regression models. Our method
converged to a minimum after a limited number of iterations.
We empirically observed that 400 iterations were sufficient for
obtaining a reliable solution for both SLR and MSRNN models
in our experiments. One convergence example is shown in Figure
10. Excluding the time for computing the LAFF features, it took
about 2 hours for our MSRNN (implemented in MATLAB on a
machine with i3-2130 CPU and 16G memory) to obtain a reliable
solution on the SYSU 3D HOI dataset with 240 training samples.

The speed of prediction. We report the average speed (in fps)
of the developed early action prediction systems in Table 7. As
shown, our prediction system can identify an action of ongoing
RGB-D sequences in real time. Especially, our SLR system
processed more than 40 frames per second using MATLAB on
a normal desktop PC (CPU i5-4570), which is about 15 fps faster
than the-state-of-the-art early prediction system developed in [67].
Our MSRNN model utilizes a more flexible non-linear predictor
and thus it predicts activities slightly slower. The prediction speed
of MSRNN is about 34 fps, which means that our MSRNN model



Pre
-p

rin
t v

er
sio

n

SUBMISSION TO IEEE TRANS. ON PAMI 12

TABLE 7
The comparison of prediction speed. The speed reported in the table

includes the time of feature computation.

Method SC [2] MSSC [2] Orderlet [67] SLR [15] MSRNN
Speed(fps) < 0.02 < 0.0024 25 40 34

Fig. 10. Illustration of the convergence of our MSRNN model.

can still predict activities in real-time with better accuracy. We
can also observe that the reported speeds of RGB video based
prediction methods (SC [2] and MSSC [2]) are significantly slower
than our early action prediction system.

4.6 Complement to the CNN features
In the previous sections, we have developed our prediction sys-
tem based on an accumulative feature called “LAFF”, which is
computed from hand-crafted HOG features for the purpose of fast
(real-time) prediction. Here, we experimentally demonstrate that
our soft regression models can also be used to process the CNN
features learned from RGB-D videos. In the implementation, we
calculated our accumulative features based on the CNN descriptors
extracted from RGB, depth and optical flow streams and fed these
features into our MSRNN model. All the CNN features were
computed using a TITAN X GPU. We tested the new system on the
SYSU 3D HOI set. For computing CNN features from RGB and
optical flow frames, we finetuned the two-stream VGG networks
[47] pre-trained on the UCF101 set [49]. For calculating CNN
features for depth stream, we trained a VGG network [48] from
depth frames. As expected, the new system can obtain an AUC of
75.4%, which outperforms the hand-crafted HOG features based
system by a margin of 3.8%. However, the prediction speed of
using CNN features is about 1.5 FPS, which is significantly slower
than using HOG features.

By directly using the two-stream action recognition model
[47] for early action prediction (for both feature extraction and
prediction), an AUC of 64.9% is achieved, which is much lower
than our system. When feeding the two-stream CNN features into
our soft regression model, we can obtain an AUC of 66.2%, which
is much higher than our system with RGB inputs (62.7%), but
much lower than that with RGB-D inputs (71.6%). Note that all
of those results are obtained using our MSRNN but with different
features, which demonstrates that our soft regression framework
is flexible and can work with different inputs.

4.7 Soft regression for predicting unconstrained RGB
actions
Here, we further illustrated that our soft regression model can also
be used to predict actions from unconstrained RGB videos. To
directly compare to other early action prediction models [2], [3],
[23], [24], [25], [41] on RGB videos only, we tested our model
on the UCF101 set [49], which contains 13320 unconstrained

Fig. 11. Comparison results on the UCF101 set.

RGB videos from 101 action classes. For evaluation, we followed
the same experimental settings as in [24], [25]. And we used
the first 15 groups of videos for training, the next 3 groups for
validation, and the rest for testing (note that those groups were
pre-partitioned in [25]). It is worth noting that the body parts of
many actions are only partially observable (e.g., action “apply
eye makeup” and “apply lipstick”). Therefore, we constructed our
“LAFF” features based on the two-stream CNN8 features extracted
for each individual frame. Finally, the calculated “LAFF” features
are fed into our soft regression framework for prediction. We
compared our system with several state-of-the-art RGB action
prediction models, including Mem-LSTM [24], RGBBiLSTM
[24], RGBLSTM [24], DeepSCN [25], MSDA [3], DBOW [41],
IBOW [41], MSSC [2], MTSSVM [23]. Figure 11 presents the
comparison results. As shown, our system obtained clearly better
prediction performances over the state-of-the-art approaches. In
particular, the best result among the existing is achieved by Mem-
LSTM [24], with an AUC of 84.1%, which is about 3% lower
than our method (87.3%). For the prediction of actions at early
stages (e.g., 10% observation ratio), our approach can achieve an
accuracy of 68%, which outperformed other competitors by a large
margin (≥17%). This validates the effectiveness of our approach
for predicting actions captured in unconstrained scenario.

5 CONCLUSIONS

In this paper, we have developed a real-time RGB-D early ac-
tion prediction system to identify ongoing actions under a soft
regression framework. In the framework, we learn soft labels for
regression on subsequences that contain partial action executions,
so that it is not necessary to assume that the progress level of
each subsequence is given at the testing stage. We learn both the
soft labels and predictor jointly from linear to deep models, and
finally a Multiple Soft labels Recurrent Neural Network (MSRNN)
that takes the relation between subsequence and the discrepancy
of soft labels over different classes into consideration is devel-
oped. In addition, a new RGB-D sequence feature called “local
accumulative frame feature (LAFF)”, which can be computed
efficiently by constructing an integral feature map, is designed to
characterize action contexts. We have demonstrated the efficacy
of our approach on RGB-D and RGB early action prediction
and show that soft labelling and depth information are important
for achieving more robust early action prediction performance.
In the future, we would consider integrating the early action
prediction with action localization [45], [57] together to form a
more complete early action analysis system.

8. We followed the settings in [24] and trained two ResNets on the UCF101
dataset for the RGB and optical flow stream, respectively. The employed
ResNet for RGB stream was pre-trained on ImageNet.
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